
NISTIR 4471

NAT L INST. OF STAND & TECH R.LC.

A111D3 MbSDlS

* NIST

PUBLICATIONS

THE TROI [TELEROBOTIC
OPERATOR INTERFACE]
USER’S GUIDE

Barry Warsaw
John Michaloski

U^. DEPARTMENT OF COMMERCE
National InstRuta of Standards

and Tachnology

Robot Systems Division

Intelligent Controls Group
BMg. 220 Rm. B127
Gaithersburg, MD 20899

QC

100

.U56

//4471

1991

r 9

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSmUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

NIST

NISTIR 4471

THE TROI [TELEROBOTIC
OPERATOR INTERFACE]
USER’S GUIDE

Barry Warsaw
John Michaloski

U^. DEPARTMENT OF COMMERCE
National Institute of Standards

and Toclinolo^

Robot Systems Division

Intelligent Controls Group
Bldg. 220 Rm. B127
Gaithersburg, MD 20899

January 1991

U.S. D^ARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, DIreetor

< ' -*•
v" '

Vjay; >*t>y filr .'^’'.:C!t'i

;)-\!''-’-'<3 ’f/t

?V.-. ,“»!v:f

"^V.

7

- -. '‘Si" ,':•

^
' ’ -

. vv

.'fl iv?l;

‘ /iMny .i:-#>A''AMt;C'

'Ve^:-

'
/:A.y;"4v:?.<:r ;,’ 'M

>'>'
;• :i'' ''1^#

5V.,.rEj';^^li'

Contents

1 Introduction 1

2 TROI Design Architecture 2
2.0.

1 TROWOI Overview 2

2.0.

2 TROI ODD Overview ..2

2.0.

3 TROI/DS Overview 2

2.0.

4 TROI Run-Time Architecture 2

2.0.

5 TROI Architecture Customization 4

2.1 Data Dictionary Descriptors 4

2.2 Visual Operator’s Interface Graphical Objects 6

2.2.1 Visual Interface Object: Alarm Box 8

2.2.2 Visual Interface Object: Cursor Tracker 8

2.2.3 Visual Interface Object: Input String .9

2.2.4 Visual Interface Object: Pulldown Menu9

2.2.5 Visual Interface Object: Selection to StringA^alue Filter 10

2.2.6 Visual Interface Object: Slider10

2.2.7 Visual Interface Object: System Variable 11

2.2.8 Visual Interface Object: Visual Number 1

1

2.2.9 Visual Interface Object: Visual String 1

1

2.2.10 Visual Interface Object; XY Position Filter11

2.3 Reader-Writer Buffer Communication 11

3 TROI Programming Environment14

3.1 X Programming Environment 14

3.1.1 X Window System 15

3.2 Ada Programming Environment 15

33 Building the new TROI Ada enabled Directory: a.troi_build 17

3.4 Sample TROI Session 18

3.4.1 Visual Interface Manipulation: Operator Panel 19

3.4.2 Visual Interface Manipulation: Saving and Loading Configurations 20

3.4.3 Visual Interface Manipulation; Visual Objects 21

3.4.3. 1 Visual Interface Manipulation: Creating Visual Objects 21

3.4.3 .2 Visual Interface Manipulation: Destroying Visual Objects 22

3.4.3.3 Visual Interface Manipulation: Locking and Unlocking Visual Objects 22

3.4.4 Visual Interface Manipulation: Configuring Data Flow Connections 23

3.4.4.1

Visual Interface (VOI) Manipulation: Making and Breaking Connections 23

3.4.5 Visual Interface Manipulation: Data Logging ..24

4 Customizing a TROI System ,25

4.1 Customizing DDD: Step by Step 25

4.1.1 Customizing TROI: Data Type Definitions Specification 25

4.1.2 Customizing TROI; Data Type Definitions Body 26

4.1.3 Customizing TROI: Data Description Definitions in oi.a 26

4.2 Running the new TROI package: 27

4.2.1 Resources and Command Line Switches 28

4.3 Object Resources 28

4.3.1 Alarm Box Object 29

4.3.2 Cursor Tracker Object 29

4.3.3 Input String 29

4.3.4 Pulldown Menu 29

4.3.5 Slider 29

4.3.6 Visual Number 30

4.3.7 Visual String 30

4.4 Example Resource Settings 30

4.5 The Interval Timer 30

iii

Appendix A: References 32

Appendix B: TROI Resource Management 33

Appendix C: Template Files 34

Appendix D: Data Dictionary Definition - Generic Parameter Descriptions39

IV

Chapter 1 - Introduction 1

1 Introduction

The TeleRobotic Operator Interface (TROI) is a robotic operator/programmer/human/user interface toolkit for the

NASA Space Station Flight Telerobotic Servicer (FT’S). The NASA/NBS Standard Reference Model for Telerobotic

Control System Architecture (NASREM) outlines the responsibilities of the Space Station Telerobot operator inter-

face (OF). NASREM states that the “operator interface provides a means by which the human operator, either in the

space station or on the ground, can observe, supervise, and directly control the telerobot.” In order to achieve this

control, NASREM states that the operator and programmer interface provide the services to control, observe, define

goals, indicate objects, edit both programs and data. NASREM defines a hierarchical architecture which requires that

the 01 share control at various levels of the hierarchy. TROI is a software toolkit that facilitates implementation of

NASREM operator interfaces. TROI supplies a generic approach to operator-interfaces emphasizing graphical win-

dow-system based technology. This generic flexibility provides the ability to design and build operator-interfaces for

all levels in the NASREM hierarchy. In real-time, TROI connects an X terminal based windowing environment via

host workstation to the target Robot Control System (RCS). RCS is a real-time, multi-processor, shared-memory sys-

tem supporting the NASREM architecture. Figure 1 shows a block diagram of the TROI architecture.

Figure 1. TROI Block Diagram

Features of TROI include;

• interactive edit, save, and load of graphical interfaces.

• real-time (20 millisecond sampling rate) data acquisition and logging.

• automated or manual communication connection to NASREM RCS.

• scripting capability to playback recorded command and parameter sequences.

• extensibility and tailorization of the data server component.

• distributed visual-interface based on X Window networking.

• embedded simulation testing procedure.

The purpose of this user guide is to provide a tutorial explaining the TROI programming environment. TROI encom-

passes a broad set of complex programming concepts, including: X-Window programming [9],[16]; Ada program-

ming [2],[4]; and the NASREM architecture [1],[5]. One can use TROI without a complete knowledge of these

subjects, but, it is advisable to have a basic working knowledge of these concepts. The manual contains the following

sections. Section 2 provides an overview of the TROI architecture including programming constructs. Section 3 de-

2 The TROI User’s Guide

scribes the programming environment including: installation of the basic TROI template, compilation and execution

of a sample operator interface, and configuration of a visual interface by creating and positioning objects. Section 4

discusses the step-by-step process for customizing a TROI operator interface and covers some of the advanced fea-

tures of TROI. When done with this manual, a reader should be able to build a TROI system that will communicate

with the target RCS system and customize the system for any special requirements.

2 TROI Design Architecture

TROI features a multi-layered software architecture. Figure 2 details the TROI architecture and outlines the function-

al layering fi-om the user to the control system. At the user level, TROI Visualization Operator interface (TROUVOF)
supports visualization through a workstation window-system. The TROWOI component is responsible for providing

visual services. The Data Description Dictionary (DDD) contains data format descriptors. The TROI Data Server

(TROI! DS) connects the user-interface to RCS. Reader/writer buffers provides communication between the data

server and the control system. In the control system, the control system programmer must define the command/status/

parameter reader/writer buffers and run-time connection for shared control.

2.0.

1 TROIA^OI Overview

The TROWOI component handles the visual interpretation of data, the interactive modification to the display layout,

connectivity of data to visual representations, and run-time input/output transaction processing. TROWOI is based

on pairing producers and consumers of data. For example, a slider visual object can be used as either an output de-

scriptor or an input mechanism. An interface design decision establishes the slider connection as either a producer of

data to the control system, or a consumer of data from the control system. TROWOI uses the visual switchboard to

define the current connectivity of the system by assigning either a producer and consumer status to either data or visu-

al objects. Section 2.2 covers the set of graphical objects. Section 3.4 covers the interactive capabilities for manipulat-

ing graphical objects, and connecting objects to DDD entries.

2.0.

2 TROI DDD Overview

DDD is the communication link between TROWOI and the TROI/DS. DDD is a list of the data that can be routed

through the system. At run-time, DDD contains the latest transaction updates to be processed. DDD is the bridge be-

tween the control system and the user-interface. Section 2.1 covers the type of DDD descriptors available and the ca-

pabilities each provides. Section 4.1 describes the process of building a DDD.

2.0.

3 TROI/DS Overview

The TROI/DS handles the routing of data to and from RCS through the NASREM reader-writer communication

mechanism. TROI/DS has two purposes: move data out of RCS (sample); and move data into RCS (update). TROI/

DS/SAMPLING is responsible for cyclically sampling RCS status buffers, and upon arrival of new user-interface di-

rectives, write RCS command buffers.TROI/DS/UPDATING is responsible for updating RCS rw buffers upon either

external input from the user or under scripted sequencing. TROI/DS uses the data routing table to resolve physical ad-

dressing specifics of the control system rw communication interface. TROI/DS supports file operation as a part of the

data routing function. File operation allows data logging and retrieval independently of the visual interface. Section

2.3 covers the NASREM reader-writer communication aspect of TROI/DS. Customization of TROI/DS is covered as

a part of the manual TROI operation in Section 2.1 describing the DDD callback feature.

2.0.

4 TROI Run-Time Architecture

Different needs and capabilities resulted in the implementation of TROI with a number of programming languages.

The control system uses an ADA development environment. TROI uses a mixture of ADA, C and Assembly. The

TROI/X module was written in C because the X environment is tailored for C. The TROI/DS was written in ADA
since RCS and TROI/DS share data types. DDD is a list structure that has an isomorphic ADA and C definition.

Chapter 2 - TROi Design Architecture 3

X Terminal LEGEND
CZ) Process

Task

EZZl Buffer

Communication Flow

o

o
oc

Object List

range choices range
“vaius” selection value

visuai number

cn
Q
O
a:
H*

o

o
1-
3
<

t

r

FILE OPERATIONS
Logging & Scripting

Local RA/V Buffers

Local R/W Local R/W Local R/W
Command Status Parameter
Buffer Buffer Buffer

>
z
c
>

c TROI/DS/RW

A
3

HOST VIRTUAL MEMORY MAPPING~><
^ CALLBACKS

^

BUS CONNECTOR

4"
Ui
h“
(/5

>m
H
UJ

O
<

GLOBAL RAA/ BUFFERS

C CONTROL SYSTEM

Local R/W Buffers

Local R/W Local R/W Local R/W
Command Status Parameter
Buffer Buffer Buffer

Robot

Figure 2. TROI Detailed Architecture

4 The TROI User’s Guide

At run-time, TROI consists of three concurrent Ada tasks including TROI/DS/SAMPLING, TROWOI, and TROI/
DS/UPDATING. Each of the tasks runs asynchronously and communicate through signals. An optional simulator

task is provided for debugging under a completely host environment. Simulated mode transparently substitutes read-

er-writer communication to host-resident dummy buffers instead of addressing the target system. The simulator task

reads and writes from these dummy communication buffers that would normally be sent to the target RCS system.

The simulator is useful in testing a TROI system and saves much time and effort when the final target interfacing is

performed.

TROI supports both automatic and manual target system communication modes. To achieve an automatic TROI sys-

tem, one simply defines the DDD and then starts TROI. Each data update is automatically transmitted between sub-

systems. Many systems need only a one-to-one variable update correspondence. However, there are times when an

entire series of variables must be set before transmitting the set of variables through the communication buffer. For

example, a command buffer to a robot may require a command, a set of joint or Cartesian values, and a traversal time.

Sending each of these variables upon update is questionable. Instead, the user sets up all command values, and then

upon signal, the command is actually transmitted via a manual write of the r/w buffer to the target system. This form

of TROI interaction is termed manual mode.

2.0.5 TROI Architecture Customization

In TROI, the control application programmer is responsible for selecting the control system variables for data routing.

All data routed through the system is placed in the dictionary. Description entries in the dictionary define the format

of the data, physical location in the control system, and any file connections for data logging and scripting. Using the

TROI user-interface, the application programmer (or graphics design expert) independently decides the visual format

of dictionary data entries. An interactive editing session defines the visual interface beforehand. At run-time, individ-

ual data is entered or displayed according the visual format definition. TROI user-interface also supports changes to

the visual representation at run-time. For example, while attempting to troubleshoot a problem an operator may de-

cide that a histogram plot conveys more information than an instantaneous bargraph.

TROI can be adapted to a variety of applications. In order to get a feel for developing aTROI operator interface, the

following sections will cover some TROI management operations available. Discussed will be the TROI construction

techniques, including object definitions, switchboard connection and configuration control, plus the TROI run-time

data logging facility. Customizing a TROI system requires understanding several TROI concepts including:

» the dictionary type descriptors,

° the graphical visual objects, and

• RCS to Visual System Communication, i.e., NASREM reader/writer communication.

These topics will be further explained in the following sections.

2.1 Data Dictionary Descriptors

Customizing a TROI system depends on the user defining the set of important RCS variables that must be available

for the user to manipulate. To customize a TROI system, a basic understanding of the parameters necessary to define

a DDD element is necessary. The DDD is created at run-time and is a list of all possible variables that the operator is

interested in manipulating. The DDD variables may be of the following types:

« single, double or n-dimensional numeric values, (of type 8-bit, 16-bit, and 32-bit integer; short float; double

float; and duration).

« enumerated Ada type input values (these supply menu choices and selections)

• enumerated Ada type output values (these supply output string, useful in status display)

• string type input and output

• command increment (when a r/w buffer is updated, increment given variable)

The user creates a file (or modifies the sample template file) containing DDD definitions based on these DDD types

with some further quantification. DDD entries are created either by compile-time generic instantiation or by a TROI

data dictionary building subroutine at run-time. Some DDD entries can only be defined with generics^

Chapter 2 - TROI Design Architecture 5

With either DDD definition method, the user suppUes a set of parameters to satisfy a DDD definition. Many DDD pa-

rameters are assigned default values and do not require specification. The user always supplies an ASCII name for the

data dictionary entry (sometimes two names if bidirectional), and the variable address var_addr (using the Ada at-

tribute 'ADDRESS). Depending on the DDD type definition, and direction of data flow (either from RCS to User or

from User to RCS), the remaining parameters vary. These parameter definitions are either further type definitions re-

finements or associated with special features of TROI, including automated communication, data logging, and call-

back.

Automated communication is available within TROI, but is optional. For any DDD, automated reader-writer com-

munication (covered in section 2.3) is enabled by specifying the boolean RW_ENTRY condition (set to true to enable,

otherwise, default is false to disable), the RW_name (this groups variables common to one r/w allowing one r/w buff-

er transmission per buffer update), RW_SIZE (to assist the table driven reader-writer communication scheme) and

RW_LOC_BUFFER_ADDR which supplies the starting address of the local copy of the reader-writer buffer for han-

dling the actual movement of data.

Data logging of variables from the RCS target system is available within TROI, and can be optionally enabled within

a DDD definition. Data logging can be automatically enabled upon startup of TROI and the RCS target system sam-

pling or can be enabled from the visual interface. To enable automatic data logging upon staitup of TROI, the param-

eters FILE_NAME (requiring an ASCII path and filename string), and ENTRY_USE (set to SAVE or BOTH to

enable saving) must be specified. LOGGING_TYPE is an adjoining data logging parameter specifying output style

for either mode.

Callbacks are a TROI feature provided to allow extensions and are considered part of the manual operating mode.

These extensions allow a broad range of customization and are powerful in addressing application-specific require-

ments. At DDD definition, the user supplies a callback procedures as either a routine name (for generic calls) or a rou-

tine address (for subroutine setup). Callbacks (to the defined procedure) occur every time the variable is updated

either by a value update or a data logging file update. Callbacks are useful for implementing such features as:

• filters. For example, taking a user-defined angle and converting to radians before sending to RCS.

• broadcast. When one variable is set, subsequently setting other companion variables. For example, pushing

one button might set three board flags.

• synchronization. When a condition occurs, initiate some action. For example, when a status variable reads

done, allow a new command to be sent.

• playback/scripting. In combination with synchronization, a variable can be used to initiate playback of a script

from a file by sending the recorded sequence of commands to the target system. After initiating, the synchro-

nization feature could send subsequent commands.

Implementation examples of these callback features are contained in a sample TROI system template. (See Appendix

C.)

Update is a feature which addresses the speed of data server sampling. Users can stipulate the frequency of any vari-

ables sampling rate, by specifying a duration for this parameter.

There are several generics that help build the DDD entries. It is important to remember that the DDD entries are the

physical representation of a variable, not the visual representation. At run-time, the user/operator edits the visual rep-

resentations of the desired DDD entries. Some specialized DDD entry builders are provided for convenience others

because comparative data is not always contiguously represented. For example, a 2-D plot would require two vari-

ables that may not be contiguous in the application data space, but are a subset of the n-dimensional {ND) data de-

scriptor space. Thus a programmer selects fields from one record and pairs them with another to achieve the x & y
type representation.The current set of DDD entry builders includes:

• NUMERIC_1D_USER_T0_RCS_BUILD - build 1 number data routing from user to res.

• NUMERIC_1D_RCS_T0_USER_BUILD - build 1 number data routing from res to user.

• NUMERIC_2D_USER_TO_RCS_BUILD - build 2D (x & y) data routing from user to res.

• NUMERlC_ND_RCS_TO_USER_BUILD - build array of numeric values data routing from res to user.

• MENU_BUILD - build enumerated type selection routing from user to res

1. Generics allow passing of Ada types and subroutines don’t.

6 The TROI User’s Guide

AUTOMATIC:
package 01 PIPE_LVL2 CENTROXD_AKRAY is new OI_X,1HJMERIC_ND_RCS_TO_0SER_BUILD

(

“

HAME => "Centroid X & Y VALUES :

ARRAY_ADDR => 0PI11T_PIPE_LVL2_CENTR0ID .CENTX' ADDRESS,
DATA_TYPE => OI_X , SHORT_FLOATING,
NUM_IN_ARRAY => 2,

RWJENTRY => TRUE,
RW_NAME => "0PINT_PIPE_LVL2_CENTR0ID ARRAY",
RW_SI2E => 0P_INT~CENTR0ID_TYPE'SI2E,
RW_^LOC_^BDPFES^ADDR => 0PINT_^PIPE_LVL2__CENTR0ID' ADDRESS,
PILE_NAME => "centroid.^t",”
ENTRY_USE => OI_X.SHOW,
CALLBACK => FILECALLBACK

);

MANUAL:
package OI_PRIM_REDUNDANCY_KESjrECHNIQUE is new OI_X.MENU_BOILD

(

NAME IN => "Redundancy Resolution Technique Selection",
NAME_OUT => "Redundancy Resolution Technique List",

VAR_ADDR => 01_PRIM_COMMAND .REDUNDANCY_RES . TCHNIQOE ' ADDRESS

,

ENUM => PRIM_REDDN_TECHNIQOE,

)y

Figure 3, Automatic vs. Manual r/w ODD Package Instantiation

' ENUM_RCS_TO_USER_BUILD - build enumerated string output routed trom res to user

« CMD_INCR_BUILD - build command number increment with r/w on updates

An example of the disparity in declarative parameters for a generic instantiation is illustrated in The Ol_P ipe_lv-
l2_CENTR0ID_array is a generic n-dimensional numeric package build. (At run-time this package will be initial-

ized causing the DDD table entry to be created.) It describes an array within a reader/writer buffer that is

automatically communicates after every update. oi_prim_redundancy_res_technique, on the other hand,

is a variable from a reader/writer buffer that would depend on some other VOI variable to trigger a callback that

would manually send the communication buffer to the target RCS system. Figure 3 illustrates the differing styles of

parameter instantiation.

Complete parameter templates of these DDD entry builders is given in Appendix D.

There is only one TROI procedural method to install a DDD entry. This function is the n-vector build taking n-di-

mensional vectors as a parameters. It takes the regular TROI feature arguments, but also has the additional parame-

ters: DATA_TYPE, DATA_FL0W_DIRECTI0N, FILTER_CALLBACK parameters (VECTOR_ADDR is merely a

rename of var_ADDR). The DATA_TYPE specifies the numeric representation which can be either integer (LONG),

float (SH0RT_FL0ATING), double (DOUBLE) or duration (TIMED)^. The DATA_FL0W_DIRECTI0N parameter

specifies the connectivity of the DDD entry, whether the information flows from RCS to visual interface

(RCS_TO_USER), or vice versa (USER_to_RCS). FILTER_CALLBACK is a specialized callback feature for data

filtering that uses a set of predefined TROI data filters. Figure 4 shows the calling protocol of n_vector_build
and then a typical invocation. Note the use of defaults in the calling specification means that many of the calling pa-

rameters do not need actual values. (In manual mode the defaults assumed by the specification
are RW_ENTRY => FALSE, RW_NAME => “NONE”, RW_SIZE => 0, RW_LOC_BUFFER_ADDRESS => address’-

ref(0), FILE_NAME => “NONE”, CALLBACK => NULLCALLBACK).

2.2 Visual Operator’s Interface Graphical Objects

The Visual Operator's Interface (VOI) provides front end access to the list of DDD variables extracted from RCS. It

is through manipulation and display of these variables that the user is able to change the internal state of the RCS, and

2. the enumerated NUMERIC_TYPE specification is in parentheses.

Chapter 2 - TROI Design Architecture 7

gather information about the state of the RCS. The VOI provides snapshots of the state- of the RCS, that is, states are

not queued up and thus some information may be lost between snapshots. The VOI and the RCS run concurrently,

and the VOI, due to the nature of embedded X window system library, will typically not be able to display informa-

tion as fast as this information is produced. However, when the TROI does take a snapshot of the system, it is guaran-

teed to be an accurate, up-to-date snapshot at the instant the “picture” was taken.

The VOI has its own interface to the data description dictionary (DDD). The DDD defines the list of system variables

necessary for the user to manipulate the control system. The VOI and the RCS data server communicate by transfer-

ring data via the DDD which is set up by the application RCS process. The DDD variable list is shared between VOI
and RCS, and though configurable on the RCS side, this list is static through the life of the VOI session. System vari-

ables are unidirectional, though some variables may have an undetermined direction when they are created, and oth-

ers may change direction under some circumstances. The direction of the variable is determined when the variable is

connected into a data flow.

The VOI maintains its own dictionary consisting of those variables associated with system variables, and other vari-

ables attached to the various VOI objects which the user creates interactively. These VOI variables are also unidirec-

tional, and again, the direction of some variables may be undetermined when they are created. The terms consumer

and producer are used to describe variables whose data flow direction have been determined. A consumer is a vari-

able into which data flows; that is it consumes information. Similarly, a producer variable generates data which flows

out of the variable. By connecting a producer to a consumer, the user configures the data flow of the VOI system. A
single producer may be connected to any number of consumers, and each consumer will see an exact replica of the in-

formation at each clock tick. A single consumer may only consume information from one producer. The structure

which maintains the data flow connections in the VOI is called the switchboard.

The user configures the desired operator interface by creating, modifying and destroying objects. Some objects have

visible component (e.g. sliders, or menus) and these are called visual objects (abbreviated as vo’s, pronounced “Vfee

Routine Specification:
procedure K_VECTOR_BOILI>

C

in string;

ygCTOR_aDDR : :: in system, address

;

DATA_TYPE : NtJMERIC_T-ZPES ;= LONG;
NUM_IN_VECTOR : integerisl;
DATA_FLOW_DSECTION ; CONNECTION_TYl'ES := DSER_TO_RCS;
OBDATE ; INTE6ER:=0;

RW_ENTRY
RW_NAME
RW_SIZE
RW LOC BUFFER ADDR

FILE_NA>E

PROC_CALLBACnK

FILTER_CALLBACK
LOGGING TYPE

: boolean :=FALSB;
; string ''NO_RW'';

; integer ;= 0;

: in integer ;=0;

string := -"NONE"

name of the data routing entry
Reader/writer specs
address of array to be routed
numeric representation
number or elems in vec array
which way does the data go

update rate
Numeric attributes
Reader/writer linkages
reader/writer entry? assume not
name of the reader/writer
size of read/write buf in bits
local read/writ buf address

Data routing parameters
default datalog filename to

save values
: ADDRESS := CALLBACK* ADDRESS

;

: ADDRESS:^ FILTERCALLBACK' ADDRESS;
: LOGGING TYPES := TEXT

Invoking with actual parameters:
OI_X.N_VECTOR_BCILD

(

NAlffi =»> "Prim Joint 1",

VECTOR__ADDR => LOCAL_TERMINATION_COND . JOINT_GOAL_POSE (1) ' ADDRESS

,

DATA_TYPE => 01_X.SH0RT_FL0AT1NG

);

Figure 4. n_vector_build TROI DDD Procedure

8 The TROI User’s Guide

Oh’s"). Other objects do not have any visual components. These non-visual objects are oftenfilters which manipulate

data along the data flow path. All objects are given names by the user when created, which must be unique. All ob-

jects also have some variables attached to them through which the object consumes or produces information. Each

object defines its interface to the system through its attached variables and it is by connecting these variables that the

user achieves input or output between the interface and the RCS.

Every variable in the VOI dictionary has 2i fully scoped name which uniquely identifies it in the system. A fully

scoped variable name contains both the variable’s local, possibly non-unique name and the name of the object to

which the variable is attached. The fact that object names are unique guarantees that fully scoped variable names are

unique. Variable names are usually predefined by the objects which contain the variable. For example, sliders have a

value variable which contains the value produced by the slider. All sliders will name their value variable '"value", and

it is the slider object’s user supplied instance name which makes the variable unique. Fully scoped variable names are

displayed in the VOI with this format: <ObjectName> :<VariableName>

,

where the colon is part of the fully

scoped name.

The VOI is both data driven and event driven. As data changes, the VOI recognizes this and propagates these changes

along the data flow path. As the user interacts with the various vo’s in the interface configuration, these window sys-

tem events are recognized and acted upon. The VOI must merge these two separate event paths and does so by inter-

lacing the window event loop with the data event loop. The structure which performs this interlacing is called the

watcher and the interlace interval is user configurable.

Below is a list of currently implemented objects, along with a description of the object’s features. Examples of these

objects can be seen in Figure 5.

2.2.1 Visual Interface Object: Alarm Box

The alarm box object is used to display a string to the user, but the most interesting feature of this object is that the

string resides in a separate frame, which can be dismissed and/or positioned by the user as a separate X window. Be-

cause this VO actually resides in a separate frame, it will not appear in the Operator’s panel is thus not subject to the

same rules of overlapping as are other vo’s. This object contains a single suing variable, called string which only con-

sumes data.

When the string value is modified, the alarm box will pop up in its last known position on the screen and display the

string in the message area. The alarm box contains a Dismiss button which pops down the frame until the string value

is once again modified^.

Figure 5 includes two examples of alarm boxes. They are labeled 2-feedback and 4-feedback. You can see how they

are actually separate X windows from the Operator’s Panel.

The VOI system creates a special instance of the alarm box object which is used to inform the user of operating errors

as they occur (for example, connecting two variables of different types). The user can set this object’s resources like

any other alarm box object. Its instance name is [SystemAlarm].

2.2.2 Visual Interface Object: Cursor Tracker

The cursor tracker object allows the user to enter 2D positional information by using the cursor. Within the tracker

frame, two cursor tracking methods can be employed. Under the first method (called Button Down Only mode), X and

Y positional information is only produced when the left or middle button is held down and dragged within the frame.

Under the second method (called All Cursor Motion mode), any cursor position (within the cursor tracking frame), re-

gardless of button state, generates X and Y positions. The tracking method can be changed by interacting with the

menu which pops up when the user clicks the right button within the cursor tracking frame. In Figure 5, the window

labeled 3-tracker is an example of a cursor tracker object. Like alarm boxes, cursor trackers are vo’s which don’t ap-

pear in the Operator’s Panel.

The coordinate system inside the frame places the origin at the upper left comer, with positive X growing to the right

and positive Y growing down. This corresponds to the X window coordinate system.

3. These behaviors will depend on the X window manager you are using.

Chapter 2 - TROI Design Architecture 9

gH OpinU Operator Panel Q^

1-0 uc 47.75

1 -feedback: 47.75

2-value: 74

Z-feedback glSlH

H 4-(eedback

Dismiss

,

Visual

Numbers

Input

String

Visual

Strings

Alarm
Boxes

Slider

Pulldown

Menu

Visual

Numbers

Cursor

Tracker

pr' [Goto Point BV
)

2-strlng: Goto Point B

4-m: the user typed thi^.

4-aut: the user typed this

Figure 5. Sample Operator Screen with Visual Objects

I he cursor tracker object contains a single producer variable called position, which is a 2D N Vector type vanable.

The X value is contained in slot zero and the Y value is contained in slot one.

2.2.3 Visual interface Object; Input String

Input String objects are used to enter text strings from the user. These are very similar to other text input fields found

in other parts of the VOI control frames. The standard editing control keys apply within the field, with two additions:

the control-C key and the return key.

The return key enters the string’s value into the system, and until it is typed, the string is not propagated from the in-

put string object’s producer variable. The control-C key is a cancel key which resets the text field to the last entered

value.

The input string object contains a single producer variable, called value, of type String. The input string’s visual com-

ponents consist of a label and a text field. An example of an input string object can be found in the operators panel in

Figure 5. The object labeled 4-in is an input string object.

2.2.4 Visual Interface Object: Pulldown Menu

The pulldown menu object allows the user to make a selection from a list of choices. The visual object associated

with these choices consists of a label and a pull down menu button. The menu button displays the last chosen selec-

10 The TROI User’s Guide

tion within the button image. Clicking on the button with the left mouse button indicates the user has re-selected the

last selection. This is a convenience so the user does not always have to pop up the menu to make multiple re-selec-

tions. Clicking on the right button, brings up a menu displaying all the choices available to the user. The previous se-

lection is highlighted with a ring around the selection text. An example, labeled 2-in can be seen in Figure 5.

The pulldown menu contains two variables, a consumer called choices from which the menu reads the list of avail-

able choices. Naturally, it is of type Choice. Also, the menu contains a producer variable of type Selection, called se-

lection.

2.2.5 Visual Interface Object: Selection to StringA/alue Filter

A variable of type Selection is a compound variable containing both a string and an integer value. There are no ob-

jects which will directly display this type of variable, so the selection to string/value filter (also called a selstrfilter)

is employed to convert a Selection type variable into two separate data streams (See Figure 6). The selstr filter has no

Selection

String

Selstr

Filter NVector (integer)

Figure 6. Selstr Data Flow Split Filter

visual components.

This filter contains three variables, a consumer of type Selection, called selection, and two producers, one of type

String, called string, and the other called value, which is a one dimensional NVector. The integer value is placed in

slot zero of the NVector variable.

In Figure 6, a selstr filter is employed in the data flow from 2-in to 2-string and 2-value. The selection produced by 2-

in flows through a selstr filter called 2-filter and is split into a string variable and integer value variable. The string

variable is connected to the consumer of 2-string (a visual string object) and the integer variable is connected to the

consumer of 2-value (a visual number object).

2.2.6 Visual Interface Object: Slider

The slider object allows the user to enter numerical values from a bounded continuous range. Sliders can also be used

to display numerical values back to the user, though they are not the best object for user feedback. Sliders can manip-

ulate double precision floating point or integer values.

The slider consists of five visual components: the label, the value area, the maximum and minimum range values, and

the slider bar area. The value area simply shows the exact numerical value of the slider. The slider’s value can be

changed by grabbing the handle within the slider bar area with the left mouse button and dragging the handle back

and forth. The value area will change as the slider handle is dragged, but the slider’s producer variable will not be up-

dated until the slider handle is released. An example of a slider is the object labeled 1-in in .

The slider contains two variables: a consumer called range and a variable called value which has an undetermined di-

rection when created (i.e., it can be connected to either a producer or a consumer). The range variable is a 2D NVector

variable with elements of type double. It is from this variable that the maximum and minimum range values can be

supplied by the RCS process (if this variable is not connected to a producer, a default maximum and minimum will be

supplied), or can be supplied as a resource (see section 4.3 on TROI resource management). The minimum value re-

sides in slot zero of the NVector and the maximum resides in slot one.

The data flow direction of the value variable is undetermined at the time of creation, which allows the user to connect

it to either a consumer or a producer. Once the connection is made, the direction of data flow is set and cannot be

changed until the connection is broken. The range variable is a 2D NVector.

Chapter 2 - TROI Design Architecture 11

2.2.7 Visual Intejlaee Object: System Variabie

The system object is a wrapper object that contains a single RCS System Variable as described as a part of the DDD.
This object converts and transports data from VOI internal structure through to the RCS structure. It also handles

reading new data from the system and transporting it into VOI through the switchboard mechanism.

The operator cannot create, modify, or destroy system objects. Creation is accomplished automatically when the sys-

tem starts up, through the RCS’s initialization procedures. System objects are persistent through the life of the VOI

session. The only time you will come in contact with system objects is when you connect to or from them using the

Connections frame, or when you perform data logging on them.

When a system object is created from a system variable in the RCS dictionary, VOI uses a modified version of the

RCS dictionary name as the name of the object. The variable name is modified by surrounding it in angle bracket

characters (“<” and If this does not yield a unique object name, then a unique integer identifier is appended to

the variable name before the brackets are attached. The brackets also serve to visually identify system variables in the

consumer, producer, and data log lists.

2.2.8 Visual Interface Object: Visual Number

The visual number object is used to display a numeric value to the operator. The value can be in any one of these

three forms: integer, float, or double (as defined in C). The visual number object contains two visual components, the

label and the value field, which are used for screen output only. No input from the user is recognized by this object.

Figure 5 contains many examples of visual number objects: 1-out, 1 -feedback, 2-value, 3-x, and 3-y.

The visual number object contains a single consumer variable, called value, of type ID NVector, with the value in slot

zero.

2.2.9 Visual Interface Object: Visual String

The visual string object is very similar to the visual number object, though instead of being used to display a numeric

value to the operator, it displays a string value to the operator. Like the visual number object, this object is used for

output only. Figure 5 also contains a few examples of visual string objects: 2-value and 4-out.

The visual string object contains a single consumer variable called value, of type String.

2.2.10 Visual Interface Object: XY Position Filter

The cursor tracking object as described above, produces a combined, 2D NVector variable describing the current po-

sition in X and Y coordinates. No output object can directly display a numeric vector variable of depth greater than 1

,

so the XY position filter object is employed to split the single data stream into two distinct data streams, one for the X
value and the other for the Y value. The function of this filter is very similar to the selstr filter described above.

This filter has no visual components. It does contain three variables: a consumer variable called XY in, which is a 2D
NVector of the type produced by a Cursor Tracker object; a producer called X out, which is the X value stream in a ID
NVector variable; and a producer called Y out, the Y value stream, also a ID NVector.

This filter, having no visual components, does not have a resource class, nor does it recognize any resource settings.

2.3 Reader-Writer Buffer Communication

A communication mechanism is embedded within TROI that enables a visual interface to share data with a NASREM
target process. NASREM communication follows a reader-writer methodology [3],[7]. TROI communication is done

via the NASREM reader-writer communication scheme [5]. In the automated mode, any data updates or modifica-

tions by either side, results in the opposite process being informed of the update. TROI features target communication

via the NASREM reader-writer communication scheme, but TROI is not limited to this communication scheme. The

user may extend the system via the callback mechanism to allow other communication strategies. However, for typi-

cal users, the NASREM reader/writer communication scheme forms the basis of user-to-target-system communica-

tion. Understanding NASREM reader/writer communication is important in building a TROI system.

12 The TROI User’s Guide

The NASREM reader-writer package uses global data buffers for communication and local buffer images for manip-

ulation. The local buffer images are written/read from the global data buffer during communication. The NASREM
reader-writer package exploits Ada generic instantiation to achieve a simple commonality among communication

buffers'^. The Ada generic construct offers a flexible way for providing a set of operators (READ, write, INIT, DA-
TA_READy; etc.) that can be applied to diverse set of buffer types. With this generic capability, NASREM communi-

cation is achieved by having two processes use the same type definition, declare generic instantiation supplying

identical physical addressing, and then use the generic tool operators to communicate through the buffer. These ge-

neric declarations facilitate intra and inter-processor communication.

The NASREM reader-writer communication scheme is best illustrated by example. Initially, a list of buffer names de-

fines the user reader-writer communication pool. (This pool of names differs from user to user, although obviously

there is an overlap of logical to physical addressing to accommodate the sharing of data.) This naming convention of-

fers a convenient mechanism for assigning physical addresses to logical reader-writer data abstractions. In the basic

sample TROI system the list of buffer names are:

type buffar_naaias is (

PAGE_BOUNDARY,
RW_COMMAND_BOFFER
RW_STAOTS_BUFFER

,

RW_PARAMETER_BDFFER

) ; (where PAGE BOUNDARY is a unique name to help align the virtual memory mapping.) J
Then communication buffer types are defined. These buffer types may be built as composite element types. All varia-

tions of Ada type definitions are permissible within a NASREM reader-writer communication buffer. For example, in

the following, pR0CESSING_M0DES is an enumerated dependent type specifying the command modes, while COM-
MAND_TYPE specifies the actual command layout. C0MMAND_TYPE is what will be use to form the generic instanti-

ation of the command reader-writer buffer.

type

type

PROCESSING_MODES is (SALUTING, AT_EASE, MARCHING)

;

COMMAND_TYPE is

record
COMMAND_NO
MODE
SPEED
ENERGY

end record;

INTEGER;
PROCESSING_MODES

;

DURATION;
SHORT FLOAT;

J
With a generic reader-writer (r/w) package instantiation, the r/w communication buffer declaration is then defined. It

uses the command new READER_writer to create the new generic, and uses the DATA (for the buffer type) and

NAME (to resolve die logical to physical addressing) elements as descriptors. The following demonstrates a simple ge-

neric package instantiation example.

package RW_COMMAND is new READER_WRITER (DATA => COMMAND_TYPE
NAME => RW COMMAND TYPE)

;

The user also must also declare a local buffer for manipulation:

r
COMMMID TYPE;

With the local instantiation, the user first assigns values to the local buffer copy:

4. We assume that the reader is familiar with the Ada generic construct. See[2][4] for more information.

Chapter 2 - TROI Design Architecture 13

=> 0 ,

=> ATJEASE,
=> 0 , 2 ,

=> 10.0

and then initializes the global butter with the generic Ada operator syntax..

LOCALjeOMMAND :

-

{COMMAND_NO

MODE
SPEED
ENERGY

); J
RW_COMMAND . INITIALIZER , (LOCAL_COMMAND)

;

Now, the NASREM reader-writer communication scheme is enabled and the user is free to read, write, and query the

global data buffer via the generic operators read, write, and new_data. For example, to send a new command,

all the parameters could be maintained (or changed) but the command number would be increased.

C
LOCAL_COMMAND.COMMAND_NO := LOCALjCOMAND .COMAND_NO + 1;

RW_COMMAND .WRITE . (LOCALjCOMMAND)

;

TROI supports this mechanism in two modes, either automatic or manual mode. In the automatic mode, TROI sup-

ports bi-directional data traffic:

• the data server reads new data from the RCS target system via a r/w buffer that is updated in the corre-

sponding r/w data elements in the data dictionary, which the VOl acknowledges. This direction of information

transmittal is called TROI/DS/SAMPLING.

• the TROI visual interface accepts user input which updates the corresponding data element in the data dictio-

nary that the data server automatically writes to the local r/w buffer. In automatic mode, the data server will do

a write-through to the target-system RCS r/w buffer. In automatic mode, no specialized code need be sup-

plied. Rather, upon DDD entry declaration, a set of r/w parameters are supplied. TROI also supports manual

reader-writer communication that is triggered only upon some user or target event that is under the direction

of non-system TROI code (supplied within a callback feature.)

In order to allow automatic r/w communication and save a complete recompilation of the TROI support Ada library,

TROI reader/writer (TROI/RW) is a modified version of the NASREM reader-writer mechanism. (Specifying a new

set of buffer names has a large set of dependent files that would need recompilation - which would imply recompiling

all of the TROI system code). The NASREM scheme (TROI manual mode) distributes reader-writer service through-

out the system. In automatic mode, TROI centralizes reader-writer service with a table-driven reader-writer mecha-

nism. After declaration, the TROI/RW is completely compatible with the regular NASREM r/w mechanism (and

actually shares the same code.) TROI uses the same enumerated type buffer definitions:

r type buffer_naines is (

PAGE_BODNDARy.
RW_COMMAND_BUFFER

,

RW^TATDS_BUFFER

,

RW_PARAMETER_BDFFER

);

However, all DDD definitions files has code to allow a one-to-one mapping of enumerated type into a positional ele-

ment in the array buf fer_addr. In the original NASREM buffer_addr is an array of the enumerated buffer

names. TROI declares buf fer_addr as an array of integers, and then uses the enumerated elements as positions in

this array. To use this enumerated positioning scheme in an integer array the following Ada unchecked conversion is

necessary:

The enumerated positioning scheme in thebuf fer_addr integer array is automatically used by the TROI logical to

physical address mapping code. However, because TROI can either be a target-buffered system or be a self-contained

simulated buffer scheme, each r/w buffer must be reset after program startup and ADA package instantiation to then

decode the command line options to physically position reader writer buffers. This is achieved by using the TROI ex-

14 The TROI User’s Guide

for buf£er_naines' size use 32;

function to_int
is new ONCHECKEDjCONVERSION
(SOORCE => buffer names, TARGET => integer);

tension r/w operator RESET. This is the only time the enumerated to integer conversion must be undertaken and the

following shows an example:

RW_COmaND .RESET (BOEFER_ADDRESSES .buffer_addr (to_int (RW_COMMAND_BOEFER))) ;

Any r/w operation within a TROI callback extension can then perform any normal reader-writer operation, such as:.

r
RW COMMAND . INITIALI2EE . (LOCAL COMMAND);

In target mode transparent to the user, the host and target system are connected by a host virtual memory mapping

scheme resolved internally in the TROI system. TROI added the enumerated buffer_type PAGE_B0UNDARY to

assist in defining the host to target memory mapping. Upon TROI startup, a user file defining r/w logical naming to

physical addressing file is input. In the NASREM r/w scenario each enumerated name is paired with a physical ad-

dress. In the TROI r/w scenario, a base address and memory size is paired with Page_BOUNDARY to define a section

of target memory containing r/w buffers, then each enumerated name is paired with an offset into this memory space.

The base address and offset addressing scheme supplies compatibility with the UNIX mmap command.

3 TROI Programming Environment

Using TROI is relatively simple. However, TROI is built using the X window methodology. Therefore, one must

have a general understanding of the X programming environment. The first section gives a brief X background and

defines general X terminology. The TROI system is built (compiled and linked) using an Ada software environment,

so that it is necessary to understand the basics of the Ada terminology and programming environment. Given this

background, the following sections will discuss building and using a sample TROI system. These sections include de-

scriptions of the interactive capabilities of TROI including editing and modifying the visual interface, and sending

and receiving data from the control system.

3.1 X Programming Environment

This section will provide a very brief background of the philosophy of X. It is important to understand the levels of

abstraction in an operator interface. Current graphics technology ranges from computers supporting graphic engines

to personal computer windowing-systems. The disparity of the graphics technology base and the need for a standard-

ized interface results in the need to select a flexible, portable, and widely-supported Graphical User Interface Devel-

opment Environment (Gf//DE).

A GUIDE is a hierarchy of graphical abstractions [10]. The modularity of a GUIDE provides portability across a

wide range of machine architectures with modifications restricted to one level in the GUIDE hierarchy. The levels of

the GUIDE hierarchy from the highest to lowest level of abstraction are:

• the user

« high-level development shells

« user interface management systems (UIMS)

• graphical user-interface

» style guides

• toolkits

• windowing system

Chapter 3 - TROI Programming Environment 15

• operating system

• hardware

TROI uses the 32-bit engineering workstation as the computer platform. Most 32-bit engineering workstations use

the UNIX^ operating system. UNIX provides networking capabilities which implies the need for a networked win-

dowing system. The X window system^ developed at MIT is widely-supported, public domain software that provides

graphical networking. Although X does not feature high-resolution graphic support, X has such broad industry sup-

port that it has become a de facto standard. X alone does not define the graphical interface. Within the X world, nu-

merous toolkits are available to augment the functionality of X. TROI uses the XView toolkit which presents an

OPEN LOOK style window GUI environment XView was selected because of previous experience with SunView^,

however, because of the insularity of GUIDE hierarchy, some future transition to alternative window GUI environ-

ments (e.g. MOTIF^) is possible.

3.1 .1 X Window System

The X Window System is based on a client/server model. The X server supplies the primitive graphics routines while

clients send packets of instructions to the X server for graphical display. The client/server model of X provides dis-

tributed graphical communication so that client graphic programs can run across machine boundaries.

The basic data object in X is the widget which encapsulates graphical information with an object-oriented approach.

Sets of widgets are defined as toolkits. To the application programmer, a toolkit is a library of graphical object sub-

routines. A sample of these objects include menus, slide bars, charts, buttons and alert fields. A style guide is respon-

sible for defining the toolkit’s visual representation and interactive behaviors. For example, the menu widget

displaying a pop-up style as opposed to a pull-down style. Figure 7 illustrates some of the basic X windowing termi-

nology.

Although helpful, managing the visual objects within an X toolkit is time-consuming and specialized. Minor changes

in visual presentation do not map into minor programming changes. For this reason, the separation of application data

from graphic visualization is imperative in a robust and flexible operator interface. Within the GUIDE hierarchy, it is

the UIMS level that is responsible for handling the requirement for the separation of application and user functional-

ity. TROI adheres to the GUIDE hierarchy in design and can be considered a UIMS.

3.2 Ada Programming Environment

This section will provide a very brief background on the Ada programming environment in support of TROI. Ada is a

general-purpose programming language developed under the initiative of the United States Department of Defense.

Its goal was to satisfy the programming needs of large, real-time embedded systems. It is important to understand

some of the basic terminology of Ada. Ada terms data types as a means for describing the structure of data. Declara-

tions create actual instances of a type. For example, whereas float is a type, X : float is an actual declaration.

Ada supports packaging (or encapsulation) of related programming constructs to give an object based programming

flavor to the language. (It is not truly object-oriented since the language does not directly support either classes or in-

heritance.) Packaging includes both a specification detailing the semantics of the package (such as the fact that +, -,

/, * are available operators to floats) and a body containing the implementation (which contains either a software

or hardware definition hidden from the user). Packaging rationale is that a specification is readily available to the

user, but information-hiding precludes the need to know the details of the package body. Ada supports tasking as a

part of the language in order to support concurrent programming. Ada offers a generic capability to define general

templates that can then be instantiated to describe a variety of actual packages or subprograms.

TROI runs under the VERDIX Ada environment or VADS^. VADS is a EKDD validated version of Ada. VAD process-

es the full Ada language as specified by the Reference Manual for the Ada Programming Language, ANSI/MIL-STD-

1815A[4]. VADS supports both self-hosted Sun-3 system and target-based 680x0 systems. TROI runs under a Sun-3

5. AT&T trademark.

6. Massachusetts Institute of Technology Consortium trademark.

7. Sun Microsystems, Inc. trademark.

8. Open Software Foundation trademark.

9. Verdbi Corporation trademark.

16 The TROI User’s Guide

X Root
Background

Cursor

2-m: Goto Point B V 4-in: the user typed thi^

4-out the user typed this
2-strlng: Goto Point B

2-value: 74

3-»C 28

3-y: 216

X twm
title bar and
window label

X window
frames

1-ln: [47.751

-34 75

1-out 47.75

1 -feedback: 47.75

Figure 7. X Window Environment Terminology

host-based Ada environment and commumcates to 68UxU target-based Ada environments in real-time across a bus-

connector.

Any TROI program must run on a machine linked to the target hardware with a bus connector. TROI contains code

which maps a physical address of the bus connector into a virtual host address to support this connection. TROI is

running a three process input, process, output tasking model with an optional simulator task. TROI uses Ada wrap-

pers to interface to the C world of X.

VADS requires all compilations to take place in an Ada library. Any directory may become such a library, called a

VADS library in the VADS user guide. In a working VADS directory, the file ada.lib contains many of the directives

important in understanding the compilation and linking strategy. The ada.lib file the adapath line contains the

search path the compiler uses for package lookup. When you with a package, you must insure that the location of

the package is contained on the ADAPATH line, and that the package specification (and body) have been compiled,

and available for search in their Ada library directory:

ADAFATH= /home/stella/ada/selfS . 7/verdixllb /home/stella/ada/ selfS . 7/standard
ADAPATH= /homa/stalla/michalos/ada/arc/oplnt/current ^/oplnt/saaiple/coda

The link options are set using wiTHx directives. Several of the with commands are already set by VADS so that the

next new wiTHx must follow sequentially after the largest wiTHx from all the ADAPATH directory ada.lib's that are

actually used. This is an example of the configuration of the wiTHx necessary to run a sample TROI system.

In this example scenario, the sample ada.lib contains wiTHx commands that skip from 1 to 4 because system TROI
packages use WITH2 and WITH3.

Chapter 3 - TROI Programming Environment 17

WITHl :LINK:/home/stella/iniohalos/ada/Bro/opitit/u8r_config/ . objects/v_usr_Gonf_b01

:

WITH4 :LINK: /home/etella/michaloe/ada/ere/opint/x/opint

:

WITHS : LINK: /home/ stella/michalos /ada/src/opint/current/oi_C_utils

3.3 Building the new TROf Ada enabled Directory: a.troi_ouna

Initially, the UNIX C-shell script a.troi_build is used to automate the basic directory setup of a new TROI system.

The user must create a new directory and then change to this directory. The user then invokes the command a.troi_-

build which performs several basic tasks. First, an Ada library supported directory is created:

C
mkdir myTROI
cd myTROI)

Second, a set of sample TROI files are copied into the new oi directory via the TROI command a . t roi_build.

These sample TROI files include sample data definitions containing reader/writer definitions, callback functions, a

simulator to test the sample TROI, and a main routine oi . a that defines the sample dictionary, and also contains run-

time code. This completes the basic directory setup,

^a.trol_build ^

It is the responsibility of the user to copy application-specific files containing reader-writer communication buffers

declarations into the new directory . To simplify construction and streamline compilation of a TROI system, the user

can reference the type and reader-writer packages in another directory. Then the new TROI ada.lib can be modified to

reflect the ability for lookup of packages in these directory. One can simply reference existing packages, but must in-

sure that the compilation of these packages has been performed with a self compiler! To modify the new TROI direc-

tory to access these packages, the Ada command a . path is used to insert the package directory’s path into the new

Ada library path lookup.

a.path -i "package_directory_path"

Otherwise one can create a Ada subdirectory off the new TROI directory, copy in the applicable code, compile this

code and simply reference the packages contained in the new subdirectory. The option code in the a.troijbuild will

automatically build a new Ada library based subdirectory called code off the new TROI directory. The following

command performs the new subdirectory creation automatically:

^ a.troi_bulld code
^

Then the user can copy in the relevant files into the directory code and compile these fields under the self hosted com-

piler. It is advisable to modify the command script file doit to reflect the files copied, so that later, should the corre-

sponding target-based files change, these files can be automatically copied over to the subdirectory code and then

recompiled.

Within the file doit in the new TROI directory, the copy option can be modified to reflect the dependency relationship

between files:

Copy over all the necessary real data definitions

#

copy; cp /. . . some_path. . . /*.a ./code J
Later, copy updates can be performed with by invoking doit with the copy option:

18 The TROI User’s Guide

3.4 Sample TROI Session

This section will illustrate the basic mechanics of compiling, linking and running the sample TROI system. To

achieve a successful oi . sample program a sequence of steps is required. First the Ada programs must be compiled

on a host with licence to run the Ada compiler. The compilation phase is done with the command doit oi:

C doit oi ^

Problems that may occur are the lack of virtual memory on the host machine. If this occurs, remove some applications

from your window environment. Similarly, check the Itmp directory for stray files and for any hidden files (starting

with a leading period

Then the files must linked with the necessary Ada and X libraries. To do this run the doit command with the link op-

tion. This command can be run on any machine, but currently requires a machine running SunOS 4.0 or later for suc-

cessful operation:

(doit link ^

To test the sample TROI system, use the command runit. This will bring up the basic run-time system that can be

used for exploring the various visual interface features:

Although not apparent from this sample session, TROI supports two modes of operation, self versus target mode
TROI. In the target mode, TROI allows a direct connection to the target system for communication. However, the tar-

get mode is a poor (and possibly dangerous - especially if connected to a robot) debugging environment. For this rea-

son, when debugging it is more expedient to flesh out a simulator (which in its simplest form just echoes the input

target system command, and then emulates some status feedback.) Although a simulator merely checks that eventual

host-target r/w communication is valid, at integration time this testing save much time and effort.

This system is demonstrating the self mode of the TROI system. The system is not connected to an actual target sys-

tem, rather it uses a simulator for feedback. The basic sample system shows two visual objects that should always be

included in your visual interface switchboard: the TROISystemState and the TROISystemSpeed. These control the

sampling of target system inputs. The TROI sampling system is initially disabled with the sampling speed set to ac-

cess every 1(X) milliseconds. These can be changed to reflect different run-time configuration. When toggling be-

tween the IDLE and RUNNING TROISsytemStates, the TROI console issues an “Input system asleep”, or an “Input

system awake” message. (Note, that if the TROISystemSpeed is set to a large amount, it will take a longer time be-

fore the sampling system responds to IDLE and RUNNING commands and issue the appropriate TROI console mes-

sage).

Visually, when the VOI first starts up, the user will see the top level, base control panel for the VOI X interface (see

Figure 8). It is through this control panel that the user is given access to all the other functions of the VOI. The top

five buttons in the control panel, when pushed, pop up other frames which access the VOI’s sub-functions*^. Each of

these sub-windows will be discussed in greater below.

The Diagnostics menu button allows the user to dump a representation of VOTs internal data structures to stdout^^.

Under normal circumstances, the user will probably not need to use the diagnostic feature at all, and the information

can help confirm DDD setup and other system mechanisms. This feature is present mosUy for system diagnostic pur-

poses.

The button entitled Use Default Wakeup Inten/al is used to set the event interlace interval to a known, non-antisocial

setting. This button becomes necessary if the user sets the interlace interval to an unacceptable value (see Section

4.5).

10. The ellipses in these buttons are an OPEN LOOK convention for indicating that a dialog window will be ptoj^d open by pressing the

button.

1 1 . The triangle glyph at the right edge of this button is another OPEN LOOK convention indicating that a puU right menu is attached to the

button. Pull down menu buttons are indicated with an arrow glyph pointing down.

Chapter 3 - TROI Programming Environment 19

[
Configuration File !/Q...]

c Data Logging... D

[
Create /Destroy Objects... ^

[
Make/Break Data Connections...

]

[
Show OpintPata Panel...

]

c Diagnostics D
C

Use Dsfault Wakeup Interval

c Quit 3

Figure 8. Opint Base Control Panel

The Quit button does the obvious thing; it exits the I ROi program.

3.4.1 Visuai interface Manipulation: Operator Panel

The operator panel is the frame on which most, but not all, user interactions will occur once the configuration setup is

determined, since most of the vo’s in a configuration are placed within this frame. This includes sliders, pulldown

menus, and text and numeric input and output Figure 7 shows the entire terminal screen of a hypothetical VOI ses-

sion, after some objects have been created and a data flow network has been determined. The frame entitled Opint:

Operator Panel in the top half of the screen is the operator panel with a number of vo’s placed on the panel

Vo’s within the operator panel can be repositioned within the extent of the panel, and the panel itself can be resized

and repositioned^^. Vo positioning is accomplished by unlocking the visual object, then grabbing it with the middle

mouse button and dragging the object to its new location. You can tell which vo you have selected by the highlight

box drawn around the vo. Initially, all vo’s are locked in their default position; selecting a vo with the middle mouse

button while it is locked will not highlight the vo. Also, many vo’s are aggregates of sub-components and these sub-

components can be repositioned individually. To reposition sub-components, the vo must be uncoupled. Re-coupling

the sub-components will allow you to move the vo as a whole, with sub-components maintaining their relative posi-

tions. Vo’s cannot be placed on top of each other and any new position which causes the currently selected vo to be

placed on top of another vo will be disallowed. Controls for locking/unlocking vo’s and for coupling/uncoupling vo

sub-components are accessible from the Objects Frame discussed below.

When VOI first starts up, the operator panel will not be visible. By pressing the Show Opint Data Panel... button in

the base control window, the user can pop open the operator panel. The operator panel cannot be dismissed, but it can

be hidden or iconified^^. The operator panel need not be visible to create or destroy vo’s, although typically it is desir-

able to make this window visible at the start of the VOI session. This panel is automatically popped open when a new

12. The aaual method of resizing and repositioning the panel depends on which X window manager is being used, and how the window

manager has been configured. The X 1 1.4 twm window manager provides several methods for frame resizing and repositioning.

13. Dismissing a frame is different than iconifying the frame. When a frame is dismissed it is, in a sense, destroyed, to be recreated later

when it is popped up again. Iconifying a frame does not destroy it, though what actually happiens to the window depends on the X win-

dow manager being used, and how that window manager is configured. With the X 1 1.4 twm window manager, the frame may either be

unmapped or iconified.

20 The TROI User’s Guide

configuration is loaded from file.

When vo’s are present on the configuration window the user may interact with these objects in OPEN LOOK compli-

ant ways, which can usually be intuitively determined. For example, moving the cursor over the slider handle, push-

ing down the left mouse button, and dragging the handle left and right, changes the slider value. In general, the left

mouse button is used to make a primary selection, and the right mouse button is used to pull up menus. The middle

button is reserved for repositioning vo’s within the operator frame. Section 2,2 and Appendix Bxovers the specifics

of the available vo’s, how you can interact with them and what attributes they own.

3.4.2 Visual Interface Manipulation: Saving and Loading Configurations

Once a configuration has been set up, it can be saved to a file and reloaded during a future session, or at a later time in

the current session. This way, you can have multiple data flows and interfaces corresponding to different sub-tasks.

Configurations can be merged by loading one setup file after another, or you can clear the current configuration before

loading the new one. All information pertaining to the current configuration is saved in the setup file, from vo posi-

tions to data flow connections. Only system variables as supplied by RCS are not saved in the configuration file since

these are static and their existence depends on the state of the RCS system dictionary at the beginning of the VOI ses-

sion.

The Configuration frame is used to load and store configurations 0-This frame contains four buttons and a text input

item. The file which will be loaded or stored is typed into the Setup File text input item. Standard relative or absolute

UNIX^'^ pathnames are valid here and some emacs-like editing control keys can be used inside the text

field[6][ll][12]*5.

[
Load Setup] [Clear Setup]

[Dismiss^

Setup File; ~/My_Opint/Sample_Configuration_1
^

Figure 9. Configuration i/0 Frame

The Load Setup button is used to load a configuration setup file. If no configuration is currently loaded, no confirma-

tion is requested before,VOI attempts to open the configuration file specified for loading. If a configuration is already

in use, then a confirmation is requested before the file is opened. Loading a setup file when VOI is already running a

configuration will merge the two configuration setups. The merged configuration then becomes the current configura-

tion.

Similarly, pressing the Save Setup button saves the current configuration into the file specified by the Setup File text

input field. Figure 9 illustrates the invocation of the save operation. If the file already exists, then confirmation is re-

quested before that file is over/written. Figure 10 illustrates what you would see if the save required confirmation. In

this figure, the user is selecting to confirm the save.

If there are any problems in accessing the configuration file, either because the proper UNIX permissions are not set

on the file or directory, or the file could not be found or opened, an error alarm box will appear, informing you of the

problem.

As mentioned earlier, multiple configurations can be merged by simply loading one configuration file after the other.

However, since object names must be unique, any subsequently loaded objects with duplicate names are ignored. An

error alarm box will pop up, informing you when an object is ignored. If you do not want to merge a configuration.

14. UNIX is a trademark of AT&T.
15. Depending on the window manager in use, simply positioning the cursor over the text field may not be sufficient to activate the field for

character input; you may need to click on the text field with the left bunon to activate the field. A grey diamond text cursor indicates the

field is not accepting character input, while a black diamond text cursor indicates the field is accepting character input This is S.O.P. for

OPEN LOOK applications

Chapter 3 - TROI Programming Environment 21

[
Cancel Save

]

[
Clear Setup

^

Setup File: ~/My_Opint/Sample_Configuration_1^

Figure 10. Confirming Fiie Overwrite during Save

but instead overload a new configuration, first clear the current configuration using the Clear Setup button in this

frame, before loading the new configuration file.

Almost the entire state of the VOI is saved in the configuration file. All objects (except system and internal objects)

and their current attribute settings are saved, as are all variable connections, and the size of the operator panel. When
loading a previously saved configuration, some parameters may no longer be valid. For example, if in a previously

saved configuration, a connection was made to a RCS system variable which is not present during the current VOI
session, this connection would no longer be valid. In these cases, the VOI will signal the problem to the user through

the error Alarm Box. VOI will continue loading the configuration if possible.

The Dismiss button will hide the configuration frame until the Configuration File I/O... button in the main control pan-

el is pushed again. You will find this Dismiss button in ail the pop up dialog frames, and its function, as described pre-

viously, is consistent in all frames.

3.4.3 Visual Interface Manipulation: Visual Objects

In this section we will discuss how to create and destroy objects, both visual and non-visual, and how to selectively

position vo’s. Facilities which are available to allow the user to control attributes of objects will be covered in sec-

tions below.

The Object Frame (shown in Figure 11), is used to create and destroy visual and non-visual objects. This frame is di-

vided into three subpanels: the top panel is used to name and create new objects, the center panel is used to destroy al-

ready existing objects, and the bottom panel is used to control positioning of visual objects in the Operator’s frame.

Object Type: Q Visual Number

Object Name: Feedbacli

[
Objects > ^

Current: Threshold

Type: Slider

[
Create J [

Dismiss]

Auto Increment Object Name:

Push to Unlock Visual Objects Push to Uncouple VO Components

Figure 11. Object Frame

3.4.3.1 Visual Interface Manipulation: Creating Visual Objects

To create a new object, you must specify the object’s name and the type of object to create. The object type is selected

through the pulldown menu entitled Object Type at the top of the Create subpanel. The text to the right of the arrow

22 The TROI User’s Guide

glyph reflects the currently selected type. Clicking the right mouse button over the arrow glyph or the object type

string will pull down a menu presenting all the object types currently implemented.

Below the Object Type menu is a text field where you must enter the object’s name. As mentioned previously, all ob-

jects in the system must be uniquely named. If an object with the current name already exists, the error Alarm Box
will pop up to inform you of this situation, and the object will not be created. Object names have some side effects

that you should note. For objects with visual components, the object name is often used to construct a default label on

the visual elements, and to look up resources in the resource database (see Appendix B). For this reason, you should

avoid using certain non-alphanumeric characters in the object names. If you need to have characters of this type in the

object’s label, you can use resources, described below, to set the object’s label separately.

When the Create button is pressed, an object of the selected type and name is created. If no error message is dis-

played, you can assume the object was successfully created. Often, when an object is created, its visual components

become visible on the screen, however some objects do not have any visible components, and others do not appear

until some system state is reached. You can verify the object’s existence by popping up the Objects menu (described

below); if the newly created object’s name appears in the list, then it has been successfully created.

If you are quickly prototyping a configuration and do not care what the exact object names will be, you can reduce the

amount of typing needed to provide unique object names by using the auto-increment feature. Turning auto- incre-

ment on (by clicking on the box button to the right of the label Auto Increment Object Name so that a check appears in

the box), will cause the system to insert a unique object name into the Object Name field whenever an object is creat-

ed. Auto-increment will modify the current object name by incrementing a qualifier number suffix. This will guaran-

tee that the object is uniquely named.

3.4.3.2 Visual Interface Manipulation: Destroying Visual Objects

Objects which have been previously created can be destroyed at any time. To destroy an object using this frame, you

must first selected it from the alphabetical list of existing objects. You do this by pulling right the menu associated

with the Objects button. When you click and hold the right mouse button over the Objects button, a menu will pop up

containing a list of objects which are candidates for destruction. Some objects, specifically system objects associated

with RCS system dictionary, cannot be destroyed and so would not be present in this list. Once an object is selected,

the Current field will display the selected object’s name and the Type field will display its type. Clicking on the De-

stroy button will destroy the selected object, however, confirmation will be required. If the object is successfully de-

stroyed, the Current and Type fields will display the string “none selected" indicating that no object is currently

selected and the object will no longer be present in the Objects list Finally, the name of the object just destroyed is

freed and can be used to name any future objects.

Destroying a graphical object will also destroy all the VOI graphical variables attached to the object Destruction will

also break all switchboard data flow connections to or from any of those destroyed variables. The system defined

DDD entries remain accessible.

There is an alternate method for destruction of vo’s within the Operator’s Panel. If you grab a vo in this panel, it is

possible to drag it outside the extent of the panel. If you release your grab on the vo while it is fully outside the visible

extent of the panel, the vo will be destroyed.

3.4.3.3 Visual Interface Manipulation: Locking and Unlocking Visual Objects

As mentioned above, vo’s in the Operator’s Panel are locked in their default positions when created and must be un-

locked before they can be repositioned. Also, most vo’s are aggregates of sub-components and these sub-components

must be uncoupled before they can be independently repositioned. There are two binary (two-state) buttons in the

bottom sub-panel which control locking/unlocking of vo’s and coupiing/uncoupling of vo sub-components.

When vo’s are locked in position, the lock/unlock binary button’s label will read Push to Unlock Visual Objects. Push-

ing the button will unlock vo’s allowing you to grab them with the middle mouse button and directly manipulate their

positions as aggregate objects. When vo’s are unlocked, the binary button’s label will read Push to Lock Visual Ob-

jects. Pushing the button at this time will lock vo’s in their current positions.

The couple/uncouple binary button works in analogous manner. When the couple/uncouple button’s label reads Push

Chapter 3 - TROI Programming Environment 23

to Uncouple vo components, pushing the button allows you to grab sub-components with the middle mouse button,

and directly manipulate their positions relative to each other. Pushing the button when its label reads Push to Couple

VO components, re-couples vo sub-components, allowing you to directly manipulate vo aggregate objects. Note that

vo’s must be unlocked before you can manipulate sub-component positions.

vo’s and vo subcomponents cannot be positioned on top of each other by the user. When directly manipulating vo or

vo component positions, the object being moved about may at times freeze in place if its commanded position would

overlap another object Direct manipulation of the grabbed object’s position will resume when you move the cursor

outside the extent of the other object.

3.4.4 Visual Interface Manipulation: Configuring Data Flow Connections

At any time during your configuration set up, you may make or break data flow connections from producer variables

to consumer variables. By making and breaking data flow connections, you will set up data paths which will propa-

gate information from the user, through visual objects, possibly through data filters, and finally to RCS. Similarly you

will set up data paths which will enable information to flow from RCS, eventually reaching a vo which graphically

displays this information.

3.4.4.1 Visual Interface (VOI) Manipulation: Making and Breaking Connections

The Connections frame (Figure 12) is used to make and break connections between VOI dictionary variables. This

frame has two sub-panels: the top panel is used to make data flow connections and the bottom panel is used to break

data flow connections.

Figure 12. Connections Frame

Before a connection can be made, both ends of the data connection must be selected. You do this by popping up the

menus attached to the Producers menu button and the Consumers menu button, and selecting a variable for each ter-

minus of the connection. Only the variables which are allowed to be producers are shown in the producers list, simi-

larly for consumers. The selected producer’s name and variable type will be displayed below the Producers menu

button; likewise for the selected consumer. In Figure 12, the user is in the middle of the selection process. A producer

variable has already been selected and the user is about to select the consumer variable for the other end of the con-

nection.

Variables of different type cannot be connected together and a variable of an undetermined direction cannot be con-

nected to itself. Once both a consumer and a producer are selected, pushing the Make Connection button will attempt

to attach the two variables. If the connection is unsuccessful, an error message will be displayed to indicate the prob-

lem. If the connection was successful, the consumer will be removed from the Consumers list'^, and the consumer’s

Selected and Type fields will revert to “none selected” to indicate no consumer is currently selected.

24 The TROI User’s Guide

To break a connection, you first select a connection from the Connection List pull right menu in the lower sub-panel,

then push the Break Connection button. Connections are displayed in the following format “<producer> ==»
<consumer>'\ where <producer> represents the fully scoped name of the producer terminus and <consumer> repre-

sents the fully scoped name of the consumer terminus.

When a connection is successfully broken, the selected connection message reverts to '"none selected", and both vari-

ables are recycled into the appropriate pool of candidate producers and/or consumers so that they can later be re-con-

nected to form a new data flow.

As soon as a data flow connection is made, information can begin to flow along that connection. If the producer vari-

able contains a value before it is connected, that value will be propagated as soon as a connection is made. Thus, since

some vo’s can be given default values, these values can be sent along their path to RCS automatically by making the

appropriate data flow connection.

3.4.5 Visual Interface Manipulation: Data Logging

System variables supplied by RCS can be data logged to a file for examination. The RCS data server process handles

the actual data logging operations for which the VOI provides a convenient front-end. These functions are accessed

through the Data Logging frame as shown in Figure 13. To perform data logging on a system variable, you must first

select the variable to log on by choosing one firom the alphabetical list presented in the System Variables pull right

menu. Figure 13 shows the user in the process of selecting the “Threshold" system variable for data logging. The cur-

rently selected variable will be displayed in the Selected message field. Data logging operations can be performed on

only one variable at a time, but multiple log files can be open simultaneously, and logging can be on-going for more

than one variable at a time.

[system Variables > Choices
File Operations:

Selected: Threshold Dummy Variable

Feedback

Maxmin

Selection

String IN

String OUT

No Operation

Start Recording

Stop Recording

Data Logging File: Record Current

datalogs/Thresholi^
Open File

Close File

[
Commit

] [
Dismiss

]

Figure 13. Data Logging Frame

The name of the data logging file to which values will be stored is entered in the Data Logging File text input field.

This file name is a standard UNIX path. The file operation to perform on the selected system variable is chosen from

the File Operations menu. Only one operation can be selected at a time. The available operations are described as fol-

lows:

1 . No Operation

This is the null file operation.

2 . Start Recording

Informs RCS to begin recording a data series of the selected variable. Data logging will continue on this

16. Since the consumer has just been attached to a producer, and consumers may only consume from a single producer, this variable is no

longer a candidate for future ccmnections, untU this connection is first broken.

Chapter 4 - Customizing a TROI System 25

variable until a stop recording operation is performed.

3 . Stop Recording

Informs RCS to stop a data series recording. Used in conjunction with the start recording operation.

4 . Record Current

Inform RCS to record only the current value of the selected variable.

5 . Open File

Informs RCS to open the data logging file as specified in the Data Logging File text input field. This

must be performed before any data logging can commence to the file.

6 . Close File

Closes the selected data logging file previously opened with an open file operation.

Making a selection from the File Operations menu does not institute the chosen file operation. The user must click on

the Commit button for the file operation to take effect Also, the data logging frame remembers the last file operation

committed on a variable.

4 Customizing a TROI System

TROI divides the user-interface into two components, the data server supplying the real-time target system connec-

tion and the visual interface system. The target system data server and the visual interface communicate via the data

dictionary. Thefundamental TROI activity is defining the data dictionary that connects the real-time system and the

visual interface. Once the data dictionary has been defined, compiled, and linked, then the user constructs the actual

visual interface interactively. A set of scripts and templates within a sample program are available to simplify build-

ing and defining the data dictionary. Customizing a TROI application system can be greatly simplified by using the

sample template programs and following a set of step by step directions. The last sections under customizing involve

personalizing the TROI visual interface with the use of the X resource manager. Again, it is helpful if one is familiar

with X.

4.1 Customizing ODD: Step by Step

Customizing a TROI system depends on the user defining the important RCS variables that must be available for the

user to manipulate. Following the directions to install and generate the sample explanatory TROI session will provide

a good foundation for customizing a TROI system. This explanatory TROI session contains template files that in-

clude comments about substituting different code to generate a different TROI application. The sample template files

include: data_defintions_a, data_definitions.a, simulator.a and oi.a. (Refer to Appendix C for listing of these files.)

Within these files are comments which outline, step-by-step, the necessary instruction to building a TROI system. In

addition, these files illustrate concepts with simple examples.

4.1 .1 Customizing TROI: Data Type Definitions Specification

The TROI data definitions specification is the first step in constructing the DDD. The basic purpose in this process is

to define the data types. The bulk of the type definitions occur in the file data_defintions_a. The data typing specifica-

tion is available to both the main oi procedures and the simulator. The following steps must be performed within the

file data_definitions_.a:

1 . Define the READER/WRITER buffer names.

2. Define the application specific commands and status types for defining the READER/WRITER buffers.

3. Define boundary ranges of variables.

4. Define the generic instantiation of the reader/writer buffers. Note: The TROI version of the reader writer does

not allow typed naming of each reader/writer buffer. Hence, there is no NAME field in the generic definition.

5. Define the local working copies of the global reader/writer buffers.

26 The TROI User’s Guide

6. Provide an init procedure in body to initialize reader/writer buffers types for defining the READER/WRITER
buffers.

7. Provide any specialized callback functions.

In customizing, the user could replace or augment this package with existing application-specific data packages.

4.1.2 Customizing TROI: Data Type Definitions Body

The TROI data definitions body is the second step in constructing the DDD. The basic purpose of this step is to ini-

tialize the physical location and values of the reader/writer buffers. The following steps must be performed within the

file datajiefinitions.a:

1. Initialize local reader/writer buffers.

2. Reset the physical location of reader/writer instantiations. This implies supplying a base address for the read-

er/writer buffer, read in from the buffer_addresses input file.

Note: buffer_addr is an array of indexed by integers, not indexed via enumerated types as with previous

versions. The change was necessary to allow a more general buffer_addresses specification. Previ-

ously, changing the buffer_addresses spec, required recompile of numerous other dependent r/w files.

RW_PARAMETER.RESET (BUITER_ADDRESSES .buffer_addr (to_int (RW_PARAMETER_BUFFER)))

;

3. Initialize the global copy of the r/w buffer. If un-initialized already, the local copy of the r/w buffer will be written

to the global r/w buffer.

4. Supply specialized callback functions.

4.1.3 Customizing TROI: Data Description Definitions in oLa

The TROI data description definitions is the third step in constructing the DDD. The basic purpose of this step is to

initialize the physical location and values of the reader/writer buffers. The following steps must be performed within

the file datajiefinitions.a:

1. WITH the Operator Interface package: buffer_addresses, oi_globals, oi_rcs, oi_x, and

oi_x_dict and User Supplied Data Definition & simulator packages

2. Include generic nop callback to allow compiler to find. Always include:

Procedure callback, renames ol_x. callback;

3. Instantiate new generic buf fer_addresses with enumerated type via file reading .

When invoked, the routine will read the buffejaddresses.datiWe.

procedure SAMPLE_BUFFER_miT is new BOFFER_ADDRESSES . INIT (ELEMENTS => BUFFER_NAMES)

;

Chapter 4 - Customizing a TROi System 27

4. Data routing definitions using generic instantiation. Example:

package OI_SAMPLE_COMMAND_ECHO is new OI_X.MENU_BDILD

{

NAME_IN
NaMB_OOT
VAR_MDR
ENUM
UPDATE

RW_ENTRY
RWJIAME
RWJSIZE
RW_LOC_BUPFER_ADDR

FILE_NAME
ENTRY_DSE

=> ''Conmand Selection",
=> ''Coimtiand List",
=> LOCAI._COMMAND.MODE 'ADDRESS
=> PROCESSING_MODES,
=> 10 ,

=> TRUE,
=> ^RW_COlffl4AND",

=> COMMaND_TYPE'SIZE,
=> LOCAL_CO^O^AND' ADDRESS,

=> ”coinmand_trace . dat"

,

=> or X.SHOW

5. After the begin is the run-time code. This code contains standard TROI code, plus any new run-time DDD def-

initions, and any run-time initialization of the physical addressing of reader-writer buffers. Revamp remaining

TROI code to reflect new packaging (wherever sample, replace with new TROI name). And add the run-time

DDD definitions.

oi__COMMAND_LINE.PARSE; — parse the command line run time parameters
— initialize r/w buffers memory locations

SAMPLE_BUFFER_IHIT

;

DATA_DEFINITIONS.IllIT; — initialize opint command buffers, etc.
— user initializes local buffers before sending
— out image to X

OI_SAMPLE_COMMAND_ECHO . INIT {BDFFER_ADDR (to_int (RW_COMMAND_BDFFER)))

;

if (SIMUliATOR) — start up simulator with signal
then SAMPLE_SIMULATOR . SIMDLATOR_SYSTEM . startup;

end if;

OX ._X.PROCESS; — when user session is complete, return to next line
if (simulator) then — specialized program termination

abort PRIM_SIMDLATOR.SIMULATOR_SYSTEM;
end if;

4.2 Running the new TROI package:

After compiling and linking the newly customized TROI package, it is time to run a TROI system. The command line

options available that are embedded with TROI are:

^ -self
-simulator
-display x;0 .

0

-debug
-semaphore
-buffer filename

choose r/w buffers on self
enable the simulator to operate
select X server display name

in this case x is a host name e.g. daneel, giskard. .

.

show underlying actions (messy)

enable semaphoring (Sun VME tas instruction)
the r/w buffer addresses file
and any X specific parameters that are passed to
the X interface

.

'A

J
When testing out an application with the simulator, the command line options -self and -simulator are both selected.

28 The TROI User’s Guide

4.2.1 Resources and Command Line Switches

All vo’s have various behaviors and attributes that can be changed by setting the appropriate resource value control-

ling the behavior. Each vo defines a set of resources that it will recognize, and the VOI application itself recognizes

resources controlling the overall behavior of the application. VOI utilizes standard X window^^ mechanisms for spec-

ifying resource settings. This section will describe resources in a very general sense. For more information see

[9][16][13][6].

An X resource setting consists of two parts, the resource specification (i.e., the resource that is going to be set), and

the value for that resource. Resources settings are usually grouped together in a resourcefile, with a single setting on

each line. The resource specification is separated from the value by a colon and optional white space. The end-

of-line character separates one resource setting from another. For example, if an application understood two resourc-

QS,foo and bar, each of which took an integer value, you might have the following lines in your resource file:

(
foo: 7

~ N
^

)

In a UNIX command shell the resource file is loaded into the X server process with the xrdb program like so:

C
% xrdb <my dsfaults flla>

)

Full resource specifications are composed of a hierarchy of resource specifications, with each level in the hierarchy

separated by a period (“.”) or asterisk (“*”). An asterisk is a wildcard resource specifier, allowing portions of the re-

source hierarchy to be omitted. The resource hierarchy of an X application is specified by the application; illustrates

VOI’s resource hierarchy. Resources relating to vo attributes are discussed in greater detail in Appendix B:.

Resources associated with the VOI itself, are also accessible through command line switches in the traditional UNIX
conventions. Here is a list of the command line switches recognized by VOI.

-go set the load-and-go flag. When this is set, VOI automatically loads the default configuration file (either the

file named '"Configuration” in the current directory, or the file specified by the =f switch below) when it

starts up.

-sec set the interlace interval seconds value.

-usee set the interlace interval milliseconds value.

-f set the default configuration file name for loading and storing.

-rn set the resource name for the VOI application. The resource name will be used to find resources specific to

this instance of the VOI application*^.

-xrm supply an X resource setting on the command line*^.

More familiarity with the use of X resource settings and standard X application conventions may be required to gain

full benefit of these switches in particular, and the resource setting model for controlling vo behavior in general.

4.3 Object Resources

Most VOI objects are aggregates of visual components based on widgets in the XView toolkit [6]. As is the conven-

tion with X based applications, the VOI recognizes a set of resources which control the specific behaviors of the var-

ious visual objects. Appendix B: outlines the Resource Hierarchy for visual objects. The sections below discuss the

resources recognized by the objects in greater detail. In this discussion, the resource class of the object is given

(where appropriate). These classes are the same for every object of that type and can be used to set the behavior of all

17. Version 1 1, release 4.

18. This switch is used to specify a string which VOI wiU use to match the highest level resource specification. In this way, the user can have

more than one set of resource specifications for different invocations of VOI. [9][16][13]

19. This is a convenience. A usage example might be; opint -xrm "foo : 7".

Chapter 4 - Customizing a TROI System 29

objects of a designated type. Objects will also have a resource name which differs for each instance of the object.

The object’s resource name is the name given to the object by the user when it is created.

4.3.1 Alarm Box Object

The alarm box object has a resource class of AlarmBox, and recognizes two resources. The first has a resource name

of geometry, resource class Geometry. The alarm box only recognizes the positional elements of the geometry speci-

fication; the size of the box is determined by the length of the string message. The second resource is named label, re-

source class Label used to set the frame’s label string.

4.3.2 Cursor Tracker Object

The cursor tracker object has a resource class of CursorTracker and recognizes three resources. The geometry and la-

bel resources are similar to those of the alarm box object. The third resource controls the cursor tracking method de-

scribed in section 2.2.2. Its resource name is alwaysTrack and its resource class is AlwaysTrack. Default is false,

indicating operation in Button Down Only mode. Setting to true indicates operation in All Cursor Motion mode.

4.3.3 Input String

The input string object has a resource class of InputString and like other objects, recognizes a label resource. It also

recognizes the resource namedfieldLength, resource class FieldLength, which is the number of characters that can

be typed into the object’s text input field. The input string object also recognizes an initialization string resource

called initializationValue, resource class InitializationValue which you can use to set the default string value for the

object.

4.3.4 Pulldown Menu

Pulldown menus have a resource class of PulldownMenu and recognize only the label resource.

4.3.5 Slider

The slider has a resource class of Slider and recognizes eight resources. As with other objects, the slider reads the la-

bel resource, and as with input string objects the slider reads the initialization value resource initializationValue,

though with the slider, this value should be a floating point number. The slider recognizes three boolean resources: 1)

the vertical resource, class Vertical, which, when set to true will make the slider orient vertically instead of the default

horizontal orientation^®; 2) the integer resource, class Integer, which, when set to true, forces the slider to input or

output only integers instead of the default double precision, floating point numbers^^ and 3) the dynamicRange re-

source, class DynamicRange. This resource determines whether the range (maximum and minimum) can be set dy-

namically (i.e., via RCS) or is static for the life of the slider. When this resource is set to true (the default), the range

variable is created and when a new value appears in this consumer, the slider’s maximum and minimum will change.

In this case any maximum and minimum resource settings are taken as default values for the range. When the dy-

namicRange resource is set to false, the range variable will not be created and the maximum and minimum resourc-

es are taken as the static range values.

As implied above, the slider recognizes the range resources minimum (class Minimum), and maximum (class Maxi-

mum). The slider also recognizes a resource describing the width of the slider in pixels. This resource is named

width, class Width. By setting the width, maximum, and minimum resources you can control the scaling factor used

20. Vertical sliders are currently not implemented in XView.

21. The value consumed or produced is still a double, but it is rounded to the nearest integer value.

30 The TROI User’s Guide

to convert slider handle positions to values within the slider’s range. The scaling formula is;

(value — minimum) X width
= handle

maximum — minimum

where value is the value of the slider’s consumer (or producer) variable; maximum, minimum, and width are the user

or system supplied resources described above; and handle is the position of the slider handle within the slider body.

4.3.6 Visual Number

The visual number object has a resource class of VisualNumber and recognizes only the label resource.

4.3.7 Visual String

The visual string object has a resource class of VisualString and recognizes the label resource.

4.4 Example Resource Settings

The following snippet from a resource file provides example resources settings which would be appropriate for con-

trolling various attributes. Note that the exclamation point denotes a commented line.

! Oplnt resources
I

Opint . loadAndGo : True
Oplnt . baseFrame. geometry : +0+0
!

! Slider resource settings
!

Oplnt . Slider.

d

3fnamlcRange ; False
Oplnt . Slider . integer : True
Opint .Slider .miniarum:-180 .

0

Oplnt .Slider .maximum: 180 .

0

Oplnt .Slider. width: 90

threshold Instance settings

Oplnt . threshold .minimum :

0

Opint .threshold. maximum; 255
Oplnt .threshold. width: 512

To explain this example resource file, suppose the interface being used looks somewhat likeFigurel4, where there are

3 sliders, two of which control joint angles, and a third which controls a threshold value.

With the resource file above, the user is specifying some application-wide behaviors such as load-and-go and the po-

sition on the X screen of the baseFrame object^^. The user is also specifying that all objects of class Slider display

only integer values, have no dynamic range, have a maximum of 180.0 and a minimum of -180.0 and be 90 pixels

wide. However the user has also specified that a particular instance of slider (named threshold by the user), override

the class values for minimum, maximum, and width in favor of the instance values of 0, 255, and 512 respectively.

4.5 The Interval Timer

Because VOI is both window event driven and data event driven, it must merge events from two separate streams. To

accomplish this, VOI’s processing loop interlaces window processing and data flow processing. The window cycle is

22. This position is supplied as a user hint to the window manager, which may or may not honor such a hint

Chapter 4 - Customizing a TROi System 31

Jolnt-1: [-97]
-180— 1 80

Jolnt-2: [29]
=1180

threshold: [1 071

Figure 14. Resource Example

a standard XView notilier loop [6J which spends a certain amount of time processing X events before breaking out

and returning control to the application (in this case the VOI data flow processing cycle). The amount of time VOI
spends in the X window event cycle before processing data events is called the interlace interval and is user config-

urable. The user can specify (via command line switches or resources - both previously covered), the interval in sec-

onds and microseconds, however, the effective granularity of the window event loop is around 30 milliseconds (i.e.,

30000 microseconds). Thus interval specifications less than this granularity (but non-zero) will default to an interval

which processes data events as quickly as possible. As the user increases the amount of time spent in the window

event loop, VOI becomes more responsive to user interactions, but less responsive to changes in the data (see Figure

15). The responsiveness of the running system is hard to determine in a general case since it will depend on secondary

factors such as network traffic, system load, the number of open X applications connected to your server, and the

amount of data being processed.

Setting the interval to zero seconds and zero microseconds is a special case which turns off the data processing loop.

Thus, at this point, VOI would be as responsive as possible to user interactions, but would never display changes in

the RCS to the user. For this reason the Use Default Wakeup Interval button is provided in the main control panel. If

you accidently set the interval to zero, pushing this button will reset VOI to process data events as fast as possible.

user interactions
changes in data

Figure 15. X Responsiveness vs. Increasing Interlace Interval

32 Appendix A: References

Appendix A: References

[1] Albus, James S., Harry G. McCain, Ronald Lumia, “NASA/NBS Standard Reference Model for Telerobot

Control System Architecture (NASREM)”, NIST Technical Note 1235, 1989 Edition.

[2] Booche, Grady. Software Engineering with Ada, Second Edition, Benjamin/Cummings Publishing, Inc. Menlo

Park, Cal., 1987.

[3] Brinch Hansen, Per. Operating System Principles. Prentice-Hall, Inc. Englewood Cliffs, NJ. 1973.

[4] DoD Reference Manualfor the Ada Programming Language, ANSI/MIL-STD-1815A-1983.

[5] Fiala, J.C. “Note on NASREM Implementation” NIST Internal Report 89-4215, National Institute of Stan-

dards and Technology, Gaithersburg, Md., December 1989.

[6] Heller, Dan, XView Programming Manual, An OPENLOOK Toolkitfor XU, O’Reilly & Associates, Inc., Vol-

ume 7, 1989.

[7] Hoare, C.A.R. “Monitors:An Operating System Concept, Communications of the ACM”, Vol. 17, No. 10,

1974.

[8] Kemighan, Brian W., Dennis M. Ritchie, The C Programming Language, 1978, Prentice-Hall, Inc., Engle-

wood Cliffs, New Jersey 07632.

[9] Nye, Adrian, Xlib Programming Manualfor Version 11, O’Reilly & Associates, Inc., Volume 1, May 1989.

[10] Mandelkem, D. “A GUIDE to High-Level User Interface Development Tools,” SUN Expert Magazine, Vol, 1,

Num. 3, Jan. 1990.

[11] OPEN LOOK Graphical User Interface Specification, Release 1.0.1, Sun Microsystems, Inc., August 1989.

[12] OPEN LOOK User Interface Style Guide, Sun Microsystems, Inc., August 1989.

[13] O’Reilly, Tim, Valerie Quercia, Linda Lamb, X Window System User’s Guidefor Version ii, O’Reilly & Asso-

ciates, Inc., Volume 3, 1988.

[14] VADS: VERDIX Ada Development System User's Guide, Verdix Corporation, Chantilly, Va. 1989.

[15] VADS: VERDIX Ada Development System Programmers Guide, Verdix Corporation, ChantiUy, Va. 1989.

[16] Xlib Reference Manualfor Version ii, O’Reilly & Associates, Inc., Volume 2, May 1989.

Appendix B: TROI Resource Management 33

Appendix B: TROI Resource Management

Resource Name (RasourceClass) Legsil Values Default Value

<applicationResourceName>^ (Opint)

loadAndGo (LoadAndGo) ^

seconds (Saconds) ^

raicroseconds (Mlcroaaconda) ^

baseFrame (Frama)

geometry (Gaomatry)

connect ionsFrame (Frama)

geometry (Gaomatry)

datalogFrame (Frama)

filename (Fllanama)

value (Valua)

fleldLength (FlaldLangth)

geometry (Gaomatry)

configurationFrame (Frama)

filename (Fllanama)

value (Valua) ®

fleldLength (FialdLangth)

geometry (Gaomatry)

confirm (Confirm)

objectsFrame (Frama)

geometry (Gaomatry)

autoincrement (Autoincramant)

confirm (Confirm)

operatorFrame (Frama)

geometry (Gaomatry)

<objectName> (AlarmBor)

geometry (Gaomatry)

label (Labal)

[SystemAlarm] (AlarmBox)

^

<objectNaine> (CuraorTrackar)

geometry (Gaomatry)

label (Labal)

alwaysTracIc (AlwaysTrack)

<objectName> (Inputstring)

label (Labal)

fleldLength (FialdLangth)

initial Iz at ionValue (InitlallzationValua)
<objectName> (PulldownManu)

label (Labal)

<objectName> (Slidar)

label (Labal)

vertical (Vartical)

integer (Intagar)

dynamicRange (DynamlcRanga)

minimum (Minimum)

maximum (Maximum)

width (Width)

initializ at ionValue (InitlallzationValua)
<objectName> (ViaualNumbar)

label (Labal)

<objectName> (ViaualStrlng)

label (Labal)

True/False .

.

<integer>
<integer>

<X geometry speclflcatlon>^

<X geometry specification>

<UNIX path>
<integer>

<X geometry speclflcatlon>

. <UNIX path>
<lnteger>

<X geometry specificatlon>
True/False

<X geometry speciflcation>
True/False . ,

True/False

<X geometry speciflcation>

<X geometry speciflcatlon>
<string>

<X geometry specificatlon>
<strlng>

True/False

<strlng>
<lnteger>
<strlng>

<string>

<strlng>
True/False
True/False
True/False
<double>
<double>

........ <integer>
<double>

<string>

<string>

. False

. . . 0

.. 350

<not set>

<not set>

. /log. dat

. . . 35

<not set>

. /Configuratior

30

. . <not set>

True

. . <not set>

.... False

..... True

. . <not set>

. . <not set>

. . <objectName>

. <not set>
<objectName>

. . . False

<obJectName>:
25

. <not set>

<objectName>

:

<objectName>

:

. . . False

. . . False

.... True

.. .

-

100.0

... 100.0

100

. <not set>

<objectName>

:

<objectName>

:

1. <applicationName> is either the program invocation name, or the name specified with -rn <applicationResourceName>.

2. command line switch equivalent is -go.

3. command line switch equivalent is -sec <seconds>.

4. command line switch equivalent is -usee <microseconds>.

5. X geometry specifications have the following format: [=\<width>x<height>{-*-)<xoffset>[-^-)<yoffset>. See [9], [16].

6. command line switch equivalent is -f <JUename>.

7. The [SyStSfnAlsrm]objea is created by the opint system to report errors to the operator.

34 Appendix C : Template File: data_definitions_.a : Data Definitions Specification

Appendix C: Template Files
“ Section 4. Define the generic instantiation of the

1

Fila: data daflnitiona .a : Data Daflnltiona Spaciflcation - reader/writer buffers.

- Note: The OI version of the reader writer does not allowing

- typed naming of each reader/writer buffer. Hence, there— HEADER : data definitions .a

— This package contains sample data definitions.
- is no NAME field in the genetic definition.

-- The packages that must be included are package RW_COMMAND is new READER_WRITER (DATA => COMMAND_TYPE);

-- UNCHECKED_CONVERSION : for buffer_type to enumerated type conversion

-- READER WRITER : for reader/wriier buffer declarations

package RW_STATUS is new READER_WRITER (DATA => STATUS_TYPE);

package RW_PARAMETERis new READER_WRITER (DATA => PARAMETER_TYPE);

with UNCHECKED CONVERSION;
with READER_WRllER;
package DATA_DEFINll lONS is

— Section 5. Define the local woridng copies of the global reader/writer buffets.

LOCAL COMMAND: COMMAND TYPE;

-- Section 1. Defining the READER/WRITER Buffer Names LOCAL_STATUS: STATUS_TYPE;

— This section will be similar in all oi definitions LOCAL_PARAMETER: PARAMETER_TYPE;

-- buffer addresses inteifacel
- Section 6. Provide a init procedure in body to initialize

type buffer names is
- reader/writer buffets

(

PAGE BOUNDARY,

- types for defining the READER/WRITER buffers.

RW_COMMAND_BUFFER, procedure INTT; — initialize data buffers used by OP

RW STATUS BUFFER,
rw_parameter_buffer - Section 7. Provide any specialized callback functions.

);
procedure samplecallback ;

" use full word for representation end DATA_DEFIN 1 1 IONS

;

for buffer_names’size use 32; — simplifies life
i

function to_int is new UNCHECICED_CONVERSION

(SOURCE => buffer_names, TARGET => integer);

— Section 2. Define the application specific commands/status

— status types for defining the READER/WRITER buffers.

type PROCESSING_MODES is (SALUTING, Ar_EASE, MARCHING);
type COMMAND_TYPE is

record

COMMAND_NO INTEGER;
MODE PROCESSING_MODES;
SPEED DURATION;
ENERGY SHOKr_FLOAT;

end record;

type STATUS.MODES is (DONE, EXECUTING, ERROR);

type ERROR_MODES is (OK,CONFUSED. DAZED. TIRED);

type STArUS_TYPE is

record

ECHO_COMMAND_NO INTEGER;

STATUS_MODE STATUS_MODES;
ERROR_TYPE ERROR_MODES;

end record;

type JOINTS_TYPE is array(1..7) of shoit_float;

type PARAMETER_TYPE is

record

X INTEGER; — \ position

Y INTEGER; -- y position

Z INTEGER; — z position

J JOINTS_TYPE; -- arm joint pos.

end record;

_ _

— Section 3. Define ranges with boundaries of variables

type boundary_type is array (1..2) of float;

T1MING_B0UNDS ; boundary_type ;= (0.1, 2,0);

Appendix C: Template File: data_definitions.a - Data Definitions Body 35

Fila: data dmfinitiona .a - Data Dafinitlona Body

procedure samplecallback is

begin

TEXT_10.put_line(‘This demonstrates the ability for user OI customization”);

Old samplecallback;

begin

nuU;

end DATA_DEFINrnONS;

This package contains sample data definition body -

include: initializations and callbacks definitions.

with BUFFER_ADDRESSES: -- must be included

with TEXTJO; — included for sample output

package body DArA_DEFINl liONS is

procedure INTT is

- Section 1. Initialize local reader/writer buffers.

begin

LOCAL_COMMAND :=

(COMMAND_NO=> 0.

MODE=> AT^EASE,

SPEED=> 0.2,

ENERGY=> 10.0

);

LOCAL_STATUS :=

(ECHO_COMMAND_NO=> 0,

STATUS_MODE=> DONE.
ERROR_TYPE=>OK
);

LOCAL_PARAMETER :=

(X =>0,

Y =>0,

Z =>0,

J => (20.0, 30.0, 10.0, 45.0, 25.0, 45.0, 33.0)

);

-- Section 2 Reset the physical location of reader/writer instantiations. This implies

- supplying a base address for ther/w buffer, read in from the buffer_addresses input

- file (see and sample_data’s spec, main.a).

-- Note: buffer_addr is an array of indexed by integers, not indexed via enumerated types as

- with previous versions. The change was nec«sary to allow a more general buffer_address

- specification. Previously, changing the buffer_addrcss spec, required recompile of

“ numerous other dependent r/w files.

RW COMMAND.RESET(BUFFER ADDRESSES.buffer addrfto -

int(RW_COMMAND_BUFFER)));

RW STATUS .RESETCBUFFER ADDRESSES.buffer addrfto -

mt(RW_STATUS_BUFFER)));

RW PARAMETER.RESET(BUFFER ADDRESSES.buffer addrfto -

mi(RW_PARAMErER_BUFFER)));

-- Section 3. Initialize global copy of r/w buffers.

-- If uninitialized already, the local copy of the r/w

-- buffer wUl be written to the global r/w buffer.

RW_COMMAND.INrnAlJZE(LOCAL_COMMAND);

RW_STATUS.INrnALIZE(LOCAL_STATUS);

RW_PARAMETER.INmALIZE(LOCAL_PARAMETER);

end INIT;

-- Section 4. Supply specialized callback functions. This feature is best explained by
“ examples.

- 1 . Suppose you want to signal six different variables when one variable is changed.

- Use the callback feature to modify the five other variables when the

- initial variable changes.

- 2. Suppose, you want to transform data from angles to radians, the callback could be used

- to do this transformation.

36 Appendix C : Template File: simulator.a - Simulation Specification and Body

File; simulMtor.t - Simulation Specification and Body

— This is a simulator to exercise the sample data

— definitions.

-- ** WITH packages list:

- SYSTEM SUPPLIED

with SYSTEM: use SYSTEM;
with TEXTJO; use TEXT_IO;

- OI SUPPLIED
with OI_GLOBALS; use OI_GLOBALS;
with DATA_DEFIN 1 1 IONS ;use DATA_DEFINirlONS;

package SAMPLE_SIMULATOR is

task SIMULATOR_SYSTEM is

pragma PRIORITY (14);

entry startup;

end SIMULATOR_SYSTEM:

end SAMPLE_SIMULArOR;

package body SAMPLE_SIMULArOR is

package enum_io is new enumeration_io(PROCESSING_MODES);

package cnum_status_io is new enumeration_io(STArUS_MODES);

package sim_int_io is new integeT_io(integer);

”** Local declarations for Reader/wiitcr-

—

SlMLUATOR_COMMAND : COMMAND_TYPE;
SlMULATOR_STATUS : STATUS.TYPE;

S1MLILAT0R_PARAMETER : PARAMETER_TYPE;

LAST_COMMAND_NO : integer := -
1
;— has the command number changed? if yes.

-*• PIPE_SIMULATOR - simulate pipe level2

usk body SIMULArOR_SYSTEM is

— indicates new command to work on.

begin

accept startup; — wait for signal to start

put(“SAMPLE SIMULATOR STARTED”); new_line;

— initialize status

SIML'LATOR_STArUS.ECHO_COMMAND_NO:= 0;

SIMULATOR_STAIUS.STATUS_MODE := DONE;
RW_STATUS.WRITE(SIMULArOR_STATUS);

delay 2,0; — wait for rest of tasks to startup

— main tasking simulated loop

loop

RW_COMMAND.READ (SIMULArOR_COMMAND);
RW_PARAMETER.READ(SIMULArOR_PARAMETER);
if (SIMULATOR_COMMAND.COMMAND_NO /= LAST_COMMAND_NO

)

then

— simulate executing command - with wait

SIMULATOR_STArUS.ECHO_COMMAND_NO :=

SIMULArOR_STATUS.ECHO_COMMAND_NO + 1 ;

SIMULATOR_STATUS.STATUS_MODE := EXECUTING;
RW_STATUS .WRITE(SIMULAXOR_STATUS);

— parameter simulation

RW_PARAMETER.WRrrE(SIMULArOR_PARAMETER);

— display simulation

putC'Simulator Command: “);

enum_io.put(SIMULATOR_COMMAND.MODE);

put(“ Status Mode: “);

enum_slatus_io.put(SIMULATOR_STATUS.STATUS_MODE);

putC' Command # “);

sim_int_io.put(SIMULATOR_COMMAND.COMMAND_NO):
new_line;

delay 1.0;

- simulate command completed in sums

LAST_COMMAND_NO ;= SIMULArOR_COMMAND.COMMAND_NO

;

SIMULATOR_STATUS.STArUS_MODE := DONE;
RW_STATUS.WRITE(SIMULArOR_STATUS);

end if;

if(SIMULATOR_COMMAND.MODE = MARCHING) then

— parameter simulation

simulator_parameter.x := simulator_parametetx + 1;

simulator_parameter.y := simulator_parametei;y + 2;

simulator_parameter.z := simulator_parameter.z + 3;

simulator_parameter.j(5) := simulator_parametcr.j(5)

+ 0.1 * simulator_command.eneTgy;

RW_PARAMETER.WRITE(SIMULATOR_PARAMETER);
— march to speed given

delay SIMULATOR.COMMAND.SPEED;
end if;

delay 0.2;— allow other processor chance

end loop;

exception

when others =>

put_Iine(’‘SIMULATOR TASK TERMINATED”);
raise;

end SIMULATOR.SYSTEM;
end SAMPLE_SIMULATOR:

Appendix C: Template File: oi.a - Main DDD Definitions and Run-time Executive 37

rile: oi.a - Main DDD Dafinitions and Run-tima £zacui:iva ENTRY_USE => OI_X.SHOW

):

- Section 1. with ADA compiler packages. Need system package OI_SAMPLE_XZ_READ is new OI X.NUMERIC 2D USER TO RCS BLTLD
- package for address definitions. (

NAME => ‘*XZ Coordinate”,

with TEXTJO; use TEXTJO; X_VAR_ADDR => LOCAL_PARAMETER.X’ADDRESS,
with system; Y_VAR_ADDR =>LOCAL_PARAMETER.Z’ADDRESS,

DATA_TYPE => OI_X.LONG.

UPDATE => 10

,

- Section 2, Operator Interface package inclusion RW_ENTRY =>TRUE,
RW_NAME => “RW_PARAMETER”,

with BUFFER_ADDRESSES use BUFFER_ADDRESSES; RW_SIZE => PARAMETER_TYPE’SIZE,

with OI_COMMAND_LINE; use OI_COMMAND_LINE; RW_LOC_BUFFER_ADDR =>LOCAL_PARAMETER’ADDRESS,
with OI_GLOBALS; use OI_GLOBALS; CALLBACK => DAiTA.DEFINITIONS.SAMPLECALLBACK

with OI_X; use OI_X;);

with OI_RCS;

package OI_SAMPLE_STArUS_ECHO is new OI_X.ENUM RCS_TO USER BUILD
-- Section 3. User Supplied Dau Definition & simulator packages (

NAME => “Sample Status ;
“,

with DATA_DEFINinONS ; use DArA_DEFINmONS; VAR_ADDR => LOCAL_STATUS.STATUS_MODE’ADDRESS.,

with SAMPLE_SIMULATOR; use SAMPLE_SIMULArOR; UPDATE =>10,
RW_ENTRY =>TRUE,
RW_NAME => “RW_STATUS”,

procedure OPERArOR_IN 1 ERFACE is RW_SIZE => STATUS_TYPE’SIZE,

RW_LOC_BUFFER_ADDR => LOCAL_STATUS ’ADDRESS,
ENUM => STATUS_MODES

-- Section 4. Generic nop callback. Always include.):

procedure callback renames oi_x.callback; package OI_SAMPLE_SPEED is new OI_XJWMERIC_lD_USER_TO_RCS_BLTLD

(

NAME => "Marching Speed “,

- Section 5. Instantiate new buffer_addresses file reading procedure with types defined VAR_ADDR =>LOCAL_COMMAND.SPEED’ADDRESS.
- in sample spec. Thus, ELEMENTS uses the BUFFER_NAMES enumerated DATA_TYPE => OI_X.TIMED,
-- type. When invoked, the routine will read the bufifer_addresses.dat file. UPDATE => 10

,

RW_ENTRY =>TRUE,
procedure SAMPLE BUFFER INTT is new BUTTER ADDRESSES.INIT(ELE- RW NAME =>“RW COMMAND”,

MENTS => BUFFER_NAMES); RW_SIZE => COMMAND_TYPE’SI2E,
RW_LOC_BUFFER_ADDR => LOCAL_COMMAND’ADDRESS

- Section 6. Data routing definitions to visual interface
):

— rw address is supplied at run-lime package OI_SAMPLE_TIMING_BOUNDS is new

OI_X.NUMERIC_ND_RCS_TO_USER_BUILD

(

NAME => “OI Speed Tuning Bounds :
“,package OI_SAMPLE_COMMAND_ECHO is new OI_X.MENU_BUILD

(ARRAY ADDR => TIMING BOUNDS’ADDRESS,
NAME_1N => “Command Selection”, DATA TYPE =>OI X.DOUBLE,
NAME_OUT => “Command List”, NUM IN ARRAY =>2,
VAR_ADDR => LOCAL_COMMAND.MODE’ADDRESS, UPDATE =>10,
ENUM => PROCESSING_MODES, RW ENTRY => FALSE - no need to use rw
UPDATE => 10,

);

RW_ENTRY => TRUE,
RW_NAME => “RW_COMMAND”, packaged SAMPLE JOINT 5 is new OI X.NUMERIC ID RCS TO USER BUILD
RW_S1ZE => COMMAND_TYPE’SIZE,

(

NAME => “Joint 5 :
“,RW_LOC_BUFFER_ADDR => LOCAL_COMMAND’ADDRESS,

FILE_NAME => “comman<l_irace.dat", VAR ADDR => LOCAL PARAMETERJ(5)’ADDRESS,
ENTRY_USE => OI_X.SHOW DArA_TYPE => OI_X.SHOKr_FLOAnNG,

! UPDATE =>10.

RW ENTRY =>TRUE,
package 01 SAMPLE COMMAND NO ECHO is new OI XJWMERIC ID RCS - RW NAME =>“RW PARAMETER”,
TO_USER_BUILD

(

RW_SIZE =>PARAMETER_TYPE’S1ZE,

RW LOC BUFFER ADDR => LOCAL PARAMETER’ADDRESS,
NAME => “Echo Command No ;

“,

FILE NAME => “joint5.dat”.
VAR ADDR => LOCAL STATUS.ECHO COMMAND -

NO’ADDRESS, ENTRY_USE => OI_X.SHOW

DATA_TYPE => OI_X.LONG,);

UPDATE => 10

,

RW ENTRY =>TRUE, package OI_SAMPLE_JOINT_ARRAY is new

RW_NAME => “RW_STATUS”, OI_X.NUMERIC_ND_RCS_TO_USER_BUILD

RW SIZE => STATUS TYPE’ SIZE, (

RW LOC BUFFER ADDR => LOCAL STATUS’ADDRESS, NAME => “Joint Array ;
”,

FILE NAME => “cmd no.dat”.
ARRAY_ADDR => LOCAL_PARAMETER.J(l)’ADDRESS,

DATA_TYPE => OI_X.SHORT_FLOATING,

38 Appendix C: Template Files

NUM_IN_ARRAY
UPDATE
RW_ENTRY
RW_NAME
RW_SIZE
RW_LOC_BUFFER_ADDR
FILE_NAME
ENTRY_USE
ENTRY_USE

);

=>7,

=> 10 ,

=>TRUE.
=> “RW_PARAMETER”.
=> PARAMETER.TYPE’SIZE,
=> LOCAL_PARAMETER’ADDRESS,
=> “joint-dat",

=> OI_X.BOTH — if recording up invoking

=> OI_X.SHOW

package OI_SAMPLE_COMMAND_INCR is new OI_X.CMD_INCR_BUILD

(

NAME
VAR_ADDR
RW_ENTRY
RW_NAME
RW_SIZE
RW_LOC_BUFFER_ADDR

=> “Incr Sample Command No”,

=> COMMAND_NO’ADDRESS,
=>TRUE,
=> “RW_COMMAND”,
=> COMMAND_TYPE’SIZE,
=> LOCAL_COMMAND’ADDRESS

):

Liis

begin

— parse the command line run time parameters

OI_COMMAND_LINE.PARSE;
— initialize rw buffers memory locations

SAMPL£_BUFFER_INrr;
— initialize opint command buffers, etc.,

DATA_DEFINrnONS.INIT;
— user initializes local buffers before sending

— out image to X
OI_SAMPLE_COMMAND_ECHO.INIT(BUFFER_ADDR(to_int(RW_COMMAND_BUFFER)));
OI_SAMPLE_SPEED.INrr(BUFFER_ADDR(to_int(RW_COMMAND_BUITER)));
OI_SAMPLE_TIMING_BOUNDS.INIT(BUFFER_ADDR(to_int(RW_COMMAND_BUFFER)));

OI_SAMPLE_STATUS_ECHO.INIT(BUFFER_ADDR(to_int(RW_STATUS_BUFFER)));

OI_SAMPLE_XZ_READ.INlT(BUFFER_ADDR(to_int(RW_PARAMETER_BUFFER)));

OI_SAMPLEJOINT_5.INIT(BUFFER_ADDR(to_int(RW_PARAMETER_BUFFER)));

OI_SAMPli_JOINT_ARRAY.INn'(BUFFER_ADDR(to_int(RW_PARAMETER_BUFFER)));

OI_SAMPLE_COMMAND_INCR.INlT(BUFFER_ADDR(to_int(RW_COMMAND_BUFFER)));
— initialize oi system, no tasking before this proc.

OI_RCS.INIT;

if(SIMULATOR) — start up simulator with signal

then SAMPLE_SIMULATOR.SIMULATOR_SYSTEM.startup;

end if;

— startup up input, process.out

— put tasks - no return from tasking

— doesn’t return until quit from window mgr.

OLRCS.PROCESS;
— specialized program termination

if(simulator) then

abort SAMPL£_SIMULATOR.SIMULATOR_SYSTEM ;

end if;

exception

when others =>

put_line(‘TJH OH! MAIN OI PROCEDURE ABNORMALLY TERMINATED”);

end OPERATOR_INTERFACE;

Appendix D: Data Dictionary Definition - Generic Parameter Descriptions 39

Appendix D: Data Dictionary Definition - Generic Parameter Descriptions

Generic DDO Parameter Declaratlona
~ 1-D NUMERIC X/USER TO RCS ENTRY BUILD : 1 number out at a time

NAME in string; — name of the data routing entry

— Reader/writer specs

VAR_ADDR in system.address; — actual data parameter address to be routed

DATA_TYPE NUMERIC_TYPES :=LONG; " numeric representation

UPDATE INTEGER:=0; — update rate

— numeric attributes

— Reader/writcr linkages

RW_ENTRY boolean ;=EALSE; “ reader/writcr entry? assume not.

RW_NAME string ;= ‘NO_RW”; — name of the reader/writer

RW_SIZE integer := 0; — size of reader/writer buffer in bits

RW LOC BUFFER ADDR in system.address:= — local reader/writer buffer address

system.address’ref(0);

FILE_NAME string := “NONE”; — default data logging file name to save values

ENTRY_USE ENTRY_USE_types := SHOW; — type of data routing

LOGGING_TYPE LOGGING_TYPES :=TEXT; — initial type of data logging

- 1-D NUMERIC RCS TO X-USER ENTRY BUILD : 1 number out at a Ume
NAME in string; — name of the data routing entry

VAR_ADDR in system.address; — actual data parameter address

DATA_TYPE NUMERIC_TYPES := LONG; — numeric representation

UPDATE INTEGER:=0; — update rate

— Reader/writcr linkages

RW_ENTRY boolean :=FALSE; ~ reader/writer entry? assume not.

RW_NAME string := “NO_RW”; — name of the readei/writer

RW_SIZE integer := 0; - size of reader/writer buffer in bits

RW LOC BUFFER ADDR in system.address := — local reader/writer buffer address

system.address’refCO);

FE-E_NAME string ;= “NONE"; — default data logging file name to save values

ENTRY_USE ENTRY_USE_types ;= SHOW; — type of dau routing

LOGGING_TYPE LOGGING_TYPES := TEXT; — initial type of data logging

with procedure CALLBACK iso — callback to routine for user mods

~ N-D NUMERIC RCS TO X-USER ENTRY BUILD : n numbers out at a time

NAME : in string; — name of the data routing entry

- numeric attributes

ARRAY_ADDR in system.address; — address of array to be routed

DATA_TYPE NUMERIC_TYPES := LONG; — numeric representation

NUM_IN_ARRAY : integer. — number or elements in vector array

GAP_SIZE : integer := 0; — size of record between entries

— if zero, use data type for calc.

UPDATE : INTEGER :=0; — update rate

— Reader/writer spec.

RW_ENTRY ; boolean :=FALSE; — reader/writcr entry? assume noL

RW_NAME : string ;= “NO_RW”; — name of the reader/wriler

RW_SIZE ; integer := 0; — size of reader/writcr buffer in bits

RW_LOC_BUFFER,.ADDR : in system.address:=

system.address’refCO);

— local reader/wriler buffer address

FILE_NAME : string := “NONE”; — default data logging file name to save values

ENTRY_USE : ENTRY_USE_types := SHOW; - type of data routing

LOGGING_TYPE ; LOGGING_TYPES :=TEXT; “ initial type of data logging

with procedure CALLBACK is o; - callback to routine for user mods

- 2-D NUMERIC INPUT ENTRY BUILD
NAME : in string; — name of data routing entry

X_VAR_ADDR : in system.address; — X value address

Y_VAR_ADDR : in system.address; — y value address

UPDATE : INTEGER:=0; — update rate

- Numeric attributes

DATA_TYPE : NUMERIC_TYPES := LONG; — numeric representation

— Reader/writcr specification

RW_ENTRY : boolean :=FALSE; — reader/wriler entry? assume not.

RW_NAME : string := “NO_RW”; — name of the reader/wriler

RW_SIZE : integer := 0; — size of readex/writer buffer in bits

rw_loc_buffer_ADDR : in system.address := — local reader/writcr buffer address

systcm.address’ref(0);

— Data routing parameters

FILE_NAME : string := “NONE”; — default data logging file name to save values

ENTRY_USE : ENTRY_USE_types := SHOW; — type of data routing

40 Appendix D: Data Dictionary Definition • Generic Parameter Descriptions

LOGGING_TYPE : LOGGING_TYPES := TEXT; ” initial type of data logging

with procedure CALLBACK is o; — callback to routine for user mods

-- ENUMERATED INPUT/OUTPUT ENTRY BUILD ; vis a vis MENU
NAME_IN : in string; — name of menu output (to user) list

NAME_0UT : in string; — name of menu selecticm (from user)

VAR_ADDR : in system.address; -- location of enumerated type parameter

type ENUM is (o); — enumerated list type

UPDATE : INTEGER:=0; — update rate

— Reader/writer specification

RW_ENTRY : boolean :=FALSE; -- reader/writer entry? assume not

RW_NAME ; string := “NO. RW”; — name of the reader/writer

RW_SIZE : integer ;= 0; — size of reader/writer buffer in bits

RW_LOC_BUFFER_ADDR ; in system.address:= -- local reader/writer buffer address

system.address ’ ref(0);

~ Data routing parameters

FILE_NAME : string := “NONE”; — default data logging file name to save selections

ENTRY_USE : ENTRY_USE_types := SHOW; — type of dau routing

LOCK3ING_TYPE : LOGGING_TYPES :=TEXT; — initial type of data logging

with procedure CALLBACK is <>; — callback to routine for user mods

- ENUMERATED OUTPUT ENTRY BUILD
NAME ^ in string; ~ name of the data routing entry

VAR_ADDR : in system.address; — locadon of enumerated type parameter

type ENUM is(o); — enumerated Usl type

UPDATE : INTEGER:=0; -- update rate

-- Reader/writer specs

RW_ENTRY : boolean ;=FALSE; — reader/writer entry? assume not.

RW_NAME : string ;= “NO_RW”; — name of the reader/writer

RW_SIZE : integer := 0; -- size of reader/writer buffer in bits

rw_loc_buffer_.ADDR • in system.address := " local reader/writer buffer address

system .address’ref(0);

— Data routing parameters

FILE_NAME ; string := “NONE”; — default data logging file name to save selections

ENTRY_USE : ENTRY_USE_typcs := SHOW; — type of data routing

LOGGING.TYPE : LOCX}ING_TYPES := TEXT; — initial type of data logging

with procedure CALLBACK is o; — callback to routine for user mods

- STRING INPUT ENTRY BUILD
NAME : in string; — name of the data routing entry

VAR_ADDR ; in system.address; — location of enumerated type parameter

UPDATE : INTEGER;=0; -- update rate

— Reader/writer specs

RW_ENTRY ; boolean :=FALSE; — reader/writer entry? assume not.

RW_NAME : string := “NO_RW”; — name of the reader/writer

RW_SIZE : integer ;= 0; — size of reader/writer buffer in bits

RW_LOC_BUFFER _ADDR : in system.address := “ local reader/writer buffer address

system.address’rcf(0);

— Data routing parameters

FILE_NAME : string := “NONE”; — default data logging file name to save selections

ENTRY_USE : ENraY_USE_typcs ;= SHOW; — type of dau routing

LOGGING_TYPE ; LOGGING_TYPES :=TEXT; — initial type of daU logging

with procedure CALLBACK is o; — callback to routine for user mods

- INCREMENT COMMAND OF RW ENTRY BUILD
NAME : in string; — Name of dau routing entry

VAR_ADDR : in system.address; — variable address to increment

— Reader/writer specification

RW_ENTRY : boolean := FALSE; — reader/writer entry? assume not

RW_NAME : string := “NO_RW”; — name of the reader/writer

RW_SIZE : integer := 0; — size of reader/writer buffer in bits

RW_LOC_BUFFER_ADDR : in system.address :=

system.addrcss’tef(0);

— local reader/writer buffer address

with procedure CALLBACK is o; — callbaclc to routine for user mods

NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
NISTIR 4471

2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
JANUARY 1991

4. TITLE AND SUBTITLE

The TROI (TeleRobotic Operator Interface) User's Guide

5. AUTHOR(S)

Barry A. Warsaw and John L. Michaloski

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20839

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

T. SPONSORING ORQANI^TION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

to. SUPPLEMENTARY NOTES

I ~I DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

This document provides an introduction to the TeleRobotic Operator Interface (TROI) system and a user guide to TROI
programming and operation. TROI provides a flexible, extensible, object-oriented interface to the NASREM robot con-

trol system (RCS). It consists of two major portions, the X-window system Graphical User Interface {GUI), and the

RCS’s data-server interface modules. TROI provides a highly dynamic environment for interacting with the RCS. The

user is able to view and modify state variables of a running control system, and to edit, save, and load graphical interface

configurations while connected to a running control system. In this way, the user can interactively perform diagnostics,

switch diagnostic contexts by creating and destroying interactive objects, and reconfigure data flow networks, allowing

control of RCS operations without the costs of switching opint operating modes. TROI merges a user-initiated window

system event model and an independent data driven event model into a single event stream

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

graphical user-interface; man-machine; object-oriented; operator interface; real-time
robot control system; user-interface management system; X Window System

13. AVAILABIUTY 14. NUMBER OF PRINTED PAGES

X UNUMITED 45

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

IS. PRICE

AO 3
X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

ELECTRONIC FORM

aVi-A

‘.>. '.‘Jtii*J. « ii>uii).'hMifti tA^ji jritrw^ntrt

H. ,.'-

/. .*J|i<.*»..i'4"'»' ^j

fi'

-r '-y'j>kl-
,

— •

• *' > *:. •

-a "

‘Vi?i
]

--.M*

?saH,3.ATM3>H1Aaa9M8»^^^*' 'fl^* »*»

• - ;SlHjm{,fi^_v- ,,' '':T

..A . . ,«j. - _,.,T._ j.rft- 1
-.y ..--«• mu Lrj-r-i-ifc--t*n->—

4n.^tfvor '•*'

'ft'S'fr.:HH;(i)'t'f , -',«i - .'.

'

'.u,t •sfxn4-^'‘-‘'r N'#

ij-)’CS(v':..t? 'M:,.-.‘^ i'yh\

'i-v:;; 1 .

' '

.

".iiiin '.s r|» <t«5iKq SVij'WiSSl'lSj....,,. .™. ,

(rjiiOau--
shTHto ««,“

‘I'V.

»

'

' '

'ji'- ""^r,

. V .fcO't»)»'>' .(!6 '‘i'f cajfi*SrT«*-;^

.

.V'/o A-rn^m^f

^ /i

4.'’<|. -JlU

^iViwW'

h'jst

. •la^nl'.'iw .^..st
,1^' tsrtwjf , .

,

i. .. '.wriijT i
•rt:*i<>>'i '.^j-v^ross^wf’ ...

.. i:nvkf.<,a'-; .'-lif'. ,

,

-—rr^rruivry rrfmr-'V,-^!;x
“"'''~^"'^

^»!f, ip‘ • •-S^jcwsr

I ...,*W- - -* '-TA’

JHC Tf;t-T^»v3^v,*w^'ifi’.'>'}
• .<».’T)."

'

' ... i'"/uv ,..f-. ,:, . .
,:...'. ,,,3«?»ti

^

;

•

.T V- .
'. 'ft\, 'ii.V. V^ I

-ij

-A cf T i'wii.iS
.)A-«?'fV

•'
', '

'
'V';

_A4'-:ii .)i4,f 111 . *(»jr
'<

.
. iv.-’^'i *yi ' i ;

.
*tS!i ..'

^ ti U,
'•

; itif ;Af‘ l>ff!.' .

'

'.>."-:ilUt4te' 'rif

m

twV ..'r iD-AS'.t'k*iVV’’ '< f'<V>t .
'*1 A',. Kitt' _»-y_.,.,,

5
. - y . «I>J» :j..»Ta-

,

4

•

,« .'’’^v^. iWJj' =*^''0
t(..I'l-rji.'fO woi^ffi’VK

r.'..'. ..

.’

'• ..,-X’)iriL

f

.«;ii. ft ''.f/iia-'W. v.*w

,-
'
f'ft w.,v.I'- •- i''.^^-xw;4U/»}'(J!.!:^^!r.''.'^,«*i..

... ij.>s. V* .T<.\vljsi?»s(if>w h-. c?*)? *v» vto :;>
>

v„r "'J'-
'

^.i i, > !^§hi
^.?»M.‘;vc; 'i

f

t

..cV.. •

>
. ...

,j

